K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

x là:   (15,6-14):2=0,8

y là :  15,6-0,8=14,8

vậy x=0,8;  y=14,8

x=0,8 : y =14,8

4 tháng 1 2018

B C D A E F H M N

a) Xét tam giác AFB và tam giác DMA có:

\(\widehat{ABF}=\widehat{DAM}\)  (Cùng phụ với góc \(\widehat{BAM}\)  )

\(\widehat{FAB}=\widehat{MDA}=90^o\)

AB = AD

\(\Rightarrow\Delta AFB=\Delta DMA\)  ( Cạnh góc vuông, góc nhọn kề)

\(\Rightarrow AF=DM\)

\(\Rightarrow DM=AE\)

Xét tứ giác AEMD có AE song song và bằng DM nên nó là hình bình hành.

Lại có \(\widehat{EAD}=90^o\)  nên AEMD là hình chữ nhật.

b) Đặt \(\frac{AE}{EB}=k\); Ta có các tỉ số: \(\frac{AE}{EB}=\frac{MD}{MC}=\frac{AD}{CN}=k\)

Ta có:  \(\frac{S_{AEH}}{S_{ABH}}=\frac{k}{k+1}\)

Ta có \(\frac{AE}{EB}=\frac{MD}{MC}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{S_{BCH}}{S_{BNH}}=\frac{k}{k+1}\)

Vậy thì \(\frac{S_{AEH}}{S_{ABH}}=\frac{S_{CBH}}{S_{BNH}}\Rightarrow\frac{S_{AEH}}{S_{ABH}}=\frac{4S_{AEH}}{S_{BNH}}\Rightarrow\frac{S_{BNH}}{S_{BAH}}=\frac{1}{4}\)

\(\Rightarrow\frac{AH}{HN}=\frac{1}{4}\Rightarrow\frac{AF}{BN}=\frac{1}{4}\)

Ta có: \(\frac{AF}{BN}=\frac{AF}{BC+CN}=\frac{AF}{\left(k+1\right)AF+\left(\frac{k+1}{k}\right)AF}=\frac{1}{4}\)

\(\Rightarrow k=1\)

Vậy thì AE = EB hay E, F là trung điểm AB, AC.

Từ đó suy ra \(EF=\frac{BD}{2}=\frac{AC}{2}\)

Vậy AC = 2EF.

c) Ta thấy ngay \(\Delta ADM\sim\Delta NCM\left(g-g\right)\)

\(\Rightarrow\frac{AM}{MN}=\frac{AD}{CN}\Rightarrow AM.CN=MN.AD\)

\(\Rightarrow AM\left(AD+CN\right)=AN.AD\)

\(\Rightarrow AM.BN=AD.AD\)

\(\Rightarrow AM^2.BN^2=AN^2.AD^2\)

\(\Rightarrow AM^2\left(AD^2+BN^2-AD^2\right)=AN^2.AD^2\)

\(\Rightarrow AM^2\left(AN^2-AD^2\right)=AN^2.AD^2\)

\(\Rightarrow AM^2.AN^2=AM^2.AD^2+AN^2.AD^2\)

\(\Leftrightarrow\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)

7 tháng 4 2019

phần b bạn giải dài quá 

ta có tam giác BAF đồng dạng với BHA (g.g)

=> af/ah=bf/ab=ab/hc

<=> af/ah=ab/hb

<=>  ae/ah=bc/hb

mà hbc=bah

suy ra hbc đồng dạng với hae (cgc)

mà ti le diện tích đồng dạng bằng bình phương tỉ lệ đồng dạng

suy ra (ae/bc)^2=1/4

=>ae/ab=1/2

3 tháng 1 2018

Ta có : \(P=\left(x-1\right)\left(x+2\right)\left(x+4\right)\left(x-7\right)-2069\)

\(=\left(x^2+x-2\right)\left(x^2-3x-28\right)-2069\)

\(=x^4-2x^3-33x^2-22x-2013\)

Thực hiện phép chia đa thức x4 - 2x3 - 33x2 - 22x - 2013 cho đa thức x2 - 6x + 2 ta có:

\(x^4-2x^3-33x^2-22x-2013=\left(x^2-6x+2\right)\left(x^2+4x-11\right)-96x+2013\)

Vậy đa thức dư là: 2013 - 96x.

2 tháng 1 2018

phương trình 1 có nhiều ẩn thế bn

2 tháng 1 2018

Câu 2:, ta có 

Xét x=1, ...

Xét x khác 1 ...

\(y=\frac{x^2+2}{x-1}=\frac{x^2-1+3}{x-1}=x+1+\frac{3}{x-1}\)

và y là số nguyên => x-1 llà ước của 3, đến đây tự giải nhé 

^_^

2 tháng 1 2018

a, 222..4 có tổng các chữ số là 104 chia 3 dư 2 nên k phải là số cp   

b.ko vì số chính phương luôn luôn chia cho 3 và 4 có số dư là 2

c, A=1994^4+7 chia 4 dư 3 nên A k phải là số cp

d,B=144..4 = 4.361..11(97 số 1)=> B chính phương <=> 361..1 chính phương mà 361..11 chi 4 dư 3 do đó B k phải là số cp

3 tháng 1 2018

tự nghĩ đi bn 

2 tháng 1 2018

\(x^7+x^5+1\)

\(=x^7+x^6+x^5-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x\) \(+x^2+x+1\)

\(=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\) \(\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)\) \(+\left(x^2+x+1\right)\)

\(=\)\(\left(x^5-x^4+x^3-x+1\right)\left(x^2+x+1\right)\)

mk vào link đấy rồi

2 tháng 1 2018

Ta có \(1+bc\ge abc+1\)

=>\(\frac{a}{1+bc}\le\frac{a}{abc+1}\)

Tương tự, + hết vào, ta có 

\(P\le\frac{a+b+c}{abc+1}\)

Mà a,b,c\(\in\left[0;1\right]\Rightarrow\left(1-a\right)\left(1-b\right)+\left(1-c\right)\left(1-ab\right)\ge0\)

=>\(a+b+c\le abc+2\le2abc+2\Rightarrow\frac{a+b+c}{abc+1}\le2\) ( cái này nhân tung ra và rút gọn và có là abc >=0)

=> P<=2 

dấu = xảy ra <=> 2 số = 1 và 1 số = 0

^_^

2 tháng 1 2018

mik ko biết

3 tháng 1 2018

(cách này ngắn hơn nè pham trung thanh) Vì a;b;c vai trò như nhau

Giả sử \(c\le a;b\Rightarrow P\le\frac{1}{4-c^2}+\frac{1}{4-c^2}+\frac{1}{4-c^2}=\frac{3}{4-c^2}\left(1\right)\)

\(c\le a;b\Rightarrow c^4\le a^4;b^4\)

Mà \(a^4+b^4+c^4=3\) 

\(\Rightarrow3\ge c^4+c^4+c^4=3c^4\)

\(\Rightarrow c^4\le1\Leftrightarrow c^2\le1\) 

\(\Rightarrow4-c^2\ge3\Rightarrow\frac{3}{4-c^2}\le1\left(2\right)\)

từ (1) và (2) \(\Rightarrow P\le1\)

Dấu "=" xảy ra khi a=b=c=1

2 tháng 1 2018

Ta có 2A=\(\frac{2}{4-ab}+\frac{2}{4-bc}+\frac{2}{4-ca}=1+1+1-\frac{2-ab}{4-ab}-\frac{2-bc}{4-bc}-\frac{2-ca}{4-ca}\)

   =3-(..)

Mà \(\frac{2-ab}{4-ab}=\frac{\left(2-ab\right)\left(2+ab\right)}{\left(2+ab\right)\left(4-ab\right)}=\frac{4-a^2b^2}{8+2ab-a^2b^2}\)

Mà \(3=a^4+b^4+c^4\ge a^4+b^4\ge2a^2b^2\Rightarrow a^2b^2\le\frac{a^4+b^4}{2}\)

Mà \(8+2ab-a^2b^2=9-\left(ab-1\right)^1\le9\)

=>\(\frac{2-ab}{4-ab}\ge\frac{4-\frac{a^4+b^4}{2}}{9}=\frac{4}{9}-\frac{a^4+b^4}{18}\)

tương tự thì ..., rồi cộng lại, ta có 

\(\frac{2-ab}{4-ab}+\frac{2-bc}{4-bc}+\frac{2-ca}{4-ca}\ge\frac{4}{3}-\frac{a^4+b^4+c^4}{9}=\frac{4}{3}-\frac{1}{3}=1\)

=>\(2A\le3-1=2\Rightarrow A\le1\)

^_^

2 tháng 1 2018

Ta có : \(c\left(ac+1\right)^2=\left(2c+b\right)\left(3c+b\right)\Leftrightarrow c\left(a^2c^2+2ac+1\right)=6c^2+5bc+b^2\)

\(\Leftrightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=b^2\)

Gọi \(\left(c;a^2c^2+2ac+1-6c-5b\right)=d\)

Khi đó ta có \(\hept{\begin{cases}c⋮d\\a^2c^2+2ac-6c+1-5b⋮d\end{cases}\Rightarrow1-5b⋮d}\)

Đặt \(\hept{\begin{cases}c=xd\\a^2c^2+2ac-6c+1-5b=yd\end{cases}}\left[x,y\in Z;\left(x;y\right)=1\right]\)

\(\Rightarrow c\left(a^2c^2+2a-6c+1-5b\right)=xyd^2\Rightarrow b^2=xyd^2\)

\(\Rightarrow b⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy c là số chính phương.