B1 tìm x ϵ Z
a)15-3.(2x-1) = - 12
b)4.(3x+2)-17 = 27
c, 18-3.(2x + 1)² = -57 2
d, (3x-2).3-7.(-8) = 120
e, (25-x²).(x + 3) = 0
f, (x + 3).5 = (x + 3).3
g, (2x-1).7 = 27. (2x - 1).4
Bài 2: Tìm x, y ∈ Z, biết:
a, (2x-1).(2y + 1) = 35
b, (5x + 2).(y-3) = 14
c, y - 6x + 2xy = 10
d, 5y 12x + 2xy = 16
Bài 2:
a: (2x-1)(2y+1)=35
=>\(\left(2x-1;2y+1\right)\in\left\{\left(1;35\right);\left(35;1\right);\left(-1;-35\right);\left(-35;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(1;17\right);\left(18;0\right);\left(0;-18\right);\left(-17;-1\right)\right\}\)
b: (5x+2)(y-3)=14
=>\(\left(5x+2;y-3\right)\in\){(1;14);(14;1);(-1;-14);(-14;-1);(2;7);(7;2);(-2;-7);(-7;-2)}
=>(x;y)\(\in\left\{\left(-\dfrac{1}{5};17\right);\left(\dfrac{12}{5};4\right);\left(-\dfrac{3}{5};-11\right);\left(-\dfrac{16}{5};2\right);\left(0;10\right);\left(1;5\right);\left(-\dfrac{4}{5};-4\right);\left(-\dfrac{9}{5};1\right)\right\}\)
mà x,y nguyên
nên \(\left(x;y\right)\in\left\{\left(0;10\right);\left(1;5\right)\right\}\)
c: y-6x+2xy=10
=>2xy-6x+y=10
=>2x(y-3)+y-3=7
=>(2x+1)(y-3)=7
=>\(\left(2x+1;y-3\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;10\right);\left(2;4\right);\left(-1;-4\right);\left(-4;2\right)\right\}\)
Bài 1:
a: \(15-3\left(2x-1\right)=-12\)
=>3(2x-1)=15+12=27
=>2x-1=9
=>2x=10
=>x=5
b: \(4\left(3x+2\right)-17=27\)
=>4(3x+2)=27+17=44
=>3x+2=11
=>3x=9
=>x=3
c: \(18-3\left(2x+1\right)^2=-57\cdot2\)
=>\(3\left(2x+1\right)^2=18+57\cdot2=132\)
=>\(\left(2x+1\right)^2=\dfrac{132}{3}=44\)
=>\(\left[{}\begin{matrix}2x+1=2\sqrt{11}\\2x+1=-2\sqrt{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\sqrt{11}-1}{2}\left(loại\right)\\x=\dfrac{-2\sqrt{11}-1}{2}\left(loại\right)\end{matrix}\right.\)
d: \(\left(3x-2\right)\cdot3-7\cdot\left(-8\right)=120\)
=>\(3\left(3x-2\right)+56=120\)
=>3(3x-2)=120-56=120-20-36=100-36=64
=>\(3x-2=\dfrac{64}{3}\)
=>\(3x=\dfrac{64}{3}+2=\dfrac{70}{3}\)
=>\(x=\dfrac{70}{9}\)
e: \(\left(25-x^2\right)\left(x+3\right)=0\)
=>\(\left[{}\begin{matrix}25-x^2=0\\x+3=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x^2=25\\x=-3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=5\\x=-5\\x=-3\end{matrix}\right.\)
f: Sửa đề: \(\left(x+3\right)^5=\left(x+3\right)^3\)
=>\(\left(x+3\right)^5-\left(x+3\right)^3=0\)
=>\(\left(x+3\right)^3\cdot\left[\left(x+3\right)^2-1\right]=0\)
=>\(\left(x+3\right)\left(x+3+1\right)\left(x+3-1\right)=0\)
=>(x+3)(x+4)(x+2)=0
=>\(\left[{}\begin{matrix}x+3=0\\x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\\x=-2\end{matrix}\right.\)
g: Sửa đề: \(\left(2x-1\right)^7=27\left(2x-1\right)^4\)
=>\(\left(2x-1\right)^7-27\cdot\left(2x-1\right)^4=0\)
=>\(\left(2x-1\right)^4\cdot\left[\left(2x-1\right)^3-1\right]=0\)
=>\(\left[{}\begin{matrix}\left(2x-1\right)^4=0\\\left(2x-1\right)^3-1=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x-1=0\\2x-1=1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
a; 15 - 3.(2\(x\) - 1) = - 12
3.(2\(x-1\)) = 15 - (-12)
3.(2\(x\) - 1) = 27
2\(x-1\) = 27 : 3
2\(x\) - 1 = 9
2\(x\) = 9 + 1
2\(x\) = 10
\(x=10:2\)
\(x=5\)
Vậy \(x=5\)
b; 4.(3\(x+2\)) - 17 = 27
4.(3\(x\) + 2) = 27 + 17
4.(3\(x\) + 2) = 44
3\(x\) + 2 = 44 : 4
3\(x\) + 2 = 11
3\(x\) = 11 - 2
3\(x\) = 9
\(x\) = 9 : 3
\(x=3\)
Vậy \(x=3\)