tim mot so biet rang so do co 500 qua trung
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác vuông OAD và tam giác vuông OBE có:
Góc O chung
OA = OB
\(\Rightarrow\Delta OAD=\Delta OBE\) (Cạnh huyền - góc nhọn)
\(\Rightarrow OE=OD\)
\(\Rightarrow\frac{OE}{OA}=\frac{OD}{OB}\Rightarrow ED//AB\) (Định lý Talet đảo)
b) Ta có ngay \(\Delta OEB\sim\Delta OAC\left(g-g\right)\Rightarrow\frac{OE}{OA}=\frac{OB}{OC}\)
\(\Rightarrow OA.OB=OE.OC\Rightarrow OB^2=OE.OC\)
c) Ta cũng có ngay \(\Delta AEB=\Delta BDA\) (Cạnh huyền - góc nhọn)
\(\Rightarrow\widehat{DAB}=\widehat{EBA}\)
Lại có \(\widehat{EBA}=\widehat{BAC}\) (Hai góc so le trong)
Nên \(\widehat{DAB}=\widehat{BAC}\) hay AB là phân giác góc CAD.
d) Ta có EB // AC nên áp dụng Ta let thì:
\(\frac{OE}{AE}=\frac{OB}{BC}\Rightarrow OE.BC=OB.AE\)
Mà OB = OA, AE = BD
Vậy nên \(OE.BC=OA.BD\)
Gọi J là trung điểm BC. Khi đó AJ là trung tuyến. Vậy thì AG = 2GJ. (1)
Xét tứ giác BIKC có BI cùng CK cùng song song với AG nên BI // CK hay BIKC là hình thang.
Xét hình thang BIKC có :
J là trung điểm BC
GJ // BI // KC
Suy ra GJ là đường trung bình hình thang BIKC.
Từ đó ta có: \(BI+CK=2GJ\) (2)
Từ (1) và (2) suy ra \(BI+KC=AG\)
1. Xét tam giác ABD có MI // AB nên theo định lý Talet ta có:
\(\frac{MI}{AB}=\frac{DI}{DB}\)
Xét tam giác ABC có NI // AB nên theo định lý Talet ta có:
\(\frac{NI}{AB}=\frac{NC}{BC}\)
2. Xét tam giác BDC có IN // DC nên \(\frac{DI}{DB}=\frac{NC}{BC}\)
Từ đó ta có: \(\frac{MI}{AB}=\frac{NI}{AB}\Rightarrow MI=IN\)
Vậy I là trung điểm MN (đpcm)
ọi phương trình là A
A <=> 4x^6 + 4x^5 + 4x^4 + 4x^3 + 4x^2 + 4x + 3 + 1 = 0
<=> (4x^6 + 4x^5 + x^4) + (2x^4 + 4x^3 + 2x^2) + (2x^2 + 4x + 2) + x^4 + 2 = 0
<=> [2.(2x^3 + x^2)^2 + 2.(√2.x^2 + √2 . x)^2 + 2.(x+1)^2 + x^4] + 2 = 0
Xét tổng các số hạng trong ngoặc vuông, các số hạng đều có thừa số 2>0, thừa số còn lại là bình phương của 1 số sẽ > 0, còn số hạng ngoài ngoặc (số 2) hiển nhiên > 0. Từ đây suy ra phương trình A vô nghiệm.
Còn cách nữa chứng minh phương trình trên vô nghiệm. Nhân cả 2 vế với x-1 rồi thu gọn, ta có phương trình: x^7 - 1 = 0 <=> x = 1.
Ta thấy x = 1 không là nghiệm của phương trình A, vậy ta có phương trình A vô nghiệm.
(Bài tính thì theo bài của bạn, còn phần chứng minh năm ở bài 290, sách Nâng cao và phát triển toán 8 tập 2, trang 15)
P/S: Đình Huy ơi, chỗ (x + 1/x)^3 - 3.x.1/x.(x + 1/x) hình như phải là (x + 1/x)^3 - 3.x.1/x.(x - 1/x) chứ nhỉ?
cách đơn giản hơn nhé.
Đặt \(A=x^6+x^5+x^4+x^3+x^2+x+1=0\)
\(\Leftrightarrow\)\(x^5\left(x+1\right)+x^3\left(x+1\right)+x\left(x+1\right)+1=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x^5+x^3+x\right)+1=0\)
\(\Leftrightarrow\)\(x\left(x+1\right)\left(x^4+x^2+1\right)+1=0\)
Ta có: \(x^4+x^2+1=\left(x^2+\frac{1}{2}\right)+\frac{3}{4}>0\) \(\forall x\)
Nếu \(x\ge0\)thì \(x+1>0\)\(\Rightarrow\)\(x\left(x+1\right)\left(x^4+x^2+1\right)\ge0\)\(\Rightarrow\)\(A>1\)
Nếu \(x=-1\) thì \(x+1=0\)\(\Rightarrow\) \(A=1\)
Nếu \(x< -1\) thì \(x+1< 0\) \(\Rightarrow\) \(A>0\)
Vậy pt vô nghiệm
P/s: sai đâu m.n chỉ cho mk nhé
10500
10500