K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

uk hello. dung dang linh tinh nha

25 tháng 11 2021

ko đăng linh tinh nha

25 tháng 11 2021

\(y\ge xy+1\ge2\sqrt{xy}\Rightarrow\sqrt{\dfrac{y}{x}}\ge2\Rightarrow\dfrac{y}{x}\ge4\)

\(Q=\dfrac{1-\dfrac{2y}{x}+2\left(\dfrac{y}{x}\right)^2}{\dfrac{y}{x}+\left(\dfrac{y}{x}\right)^2}\)

Đặt \(\dfrac{y}{x}=a\ge4\)

\(Q=\dfrac{2a^2-2a+1}{a^2+a}=\dfrac{2a^2-2a+1}{a^2+a}-\dfrac{5}{4}+\dfrac{5}{4}=\dfrac{\left(a-4\right)\left(3a-1\right)}{4\left(a^2+1\right)}+\dfrac{5}{4}\ge\dfrac{5}{4}\)

\(Q_{min}=\dfrac{5}{4}\) khi \(a=4\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

25 tháng 11 2021

55rt5re3e4rt6huy6rrer55t6yy7

25 tháng 11 2021

Xét đường tròn (O;R) có A, B \(\in\left(O;R\right)\)\(\Rightarrow OA=OB=R\)

Mà \(R=3cm\left(gt\right)\Rightarrow OA=OB=3cm\)

Vì MA là tiếp tuyến tại A của (O) (gt) \(\Rightarrow MA\perp OA\)tại A \(\Rightarrow\Delta OMA\)vuông tại A

\(\Rightarrow OM^2=OA^2+AM^2\left(đlPytago\right)\)\(\Rightarrow AM^2=OM^2-OA^2\Rightarrow AM=\sqrt{OM^2-OA^2}=\sqrt{5^2-3^2}=\sqrt{25-9}=\sqrt{16}=4\left(cm\right)\)

Xét đường tròn (O) có hai tiếp tuyến tai A và B cắt nhau tại M (gt) \(\Rightarrow MA=MB\)(tính chất hai tiếp tuyến cắt nhau)

Mà \(MA=4cm\left(cmt\right)\Rightarrow MB=4cm\)

Chu vi tứ giác AMBO là \(MA+MB+OA+OB=4+4+3+3=14\left(cm\right)\)

Gọi H là giao điểm của OM và AB.

Ta có \(MA=MB\left(cmt\right)\)\(\Rightarrow\)M nằm trên đường trung trực của AB. (1)

Lại có \(OA=OB\left(=R\right)\)\(\Rightarrow\)O nằm trên đường trung trực của AB. (2)

Từ (1) và (2) \(\Rightarrow\)OM lả đường trung trực của AB. \(\Rightarrow\hept{\begin{cases}AH=BH=\frac{AB}{2}\\AH\perp OM\left(H\in OM\right)\end{cases}}\)

\(\Rightarrow\)AH là đường cao của \(\Delta OMA\)

Xét \(\Delta OMA\)vuông tại A có đường cao AH (cmt) \(\Rightarrow AH.OM=MA.OA\left(htl\right)\)

\(\Rightarrow AH=\frac{MA.OA}{OM}=\frac{4.3}{5}=\frac{12}{5}=2,4\left(cm\right)\)

\(\Rightarrow AB=2AH=2.2,4=4,8\left(cm\right)\)

Xét tiếp \(\Delta OMA\)vuông tại A có đường cao AH \(\Rightarrow MA^2=MH.MO\left(htl\right)\)

\(\Rightarrow MH=\frac{MA^2}{MO}=\frac{4^2}{5}=\frac{16}{5}=3,2\left(cm\right)\)

Diện tích \(\Delta MAB\)là \(S_{MAB}=\frac{1}{2}AB.MH=\frac{1}{2}.4,8.3,2=7,68\left(cm^2\right)\)

25 tháng 11 2021

e, \(\sqrt{6-2\sqrt{5}}+\sqrt{8+2\sqrt{15}}-\sqrt{3}\)

\(=\sqrt{5}-1+\sqrt{5}+\sqrt{3}-\sqrt{3}=2\sqrt{5}-1\)

7d, Cho x = 0 => \(y=3-3k\)

=> \(A\left(0;-3k+3\right)\)thuộc d1 => d1 cắt trục Oy tại OA = \(\left|3-3k\right|\)

Cho y = 0 => \(x=\frac{3k-3}{k-3}\)

=> \(B\left(\frac{3k-3}{k-3};0\right)\)thuộc d1 => d1 cắt trục Ox tại OB = \(\left|\frac{3k-3}{k-3}\right|\)

Ta có : \(S_{OAB}=\frac{1}{2}\left|\frac{3k-3}{k-3}.\left(3-3k\right)\right|=1\)

\(\Leftrightarrow\left|\frac{\left(3k-3\right)\left(3-3k\right)}{k-3}\right|=1\)

\(\Leftrightarrow\left|\frac{-3k^2+9k}{k-3}\right|=1\Leftrightarrow\left|\frac{-3k\left(k-3\right)}{k-3}\right|=1\Leftrightarrow\left|-3k\right|=1\)

đk : \(-3k\ge0\Leftrightarrow k\le0\)

TH1 : \(-3k=1\Leftrightarrow k=-\frac{1}{3}\)(ktm)

TH2 : \(-3k=-1\Leftrightarrow k=\frac{1}{3}\)(tm) 

25 tháng 11 2021

sửa dòng 5 từ dưới lên nhé 

\(\Leftrightarrow\left|\frac{\left(3k-3\right)\left(3-3k\right)}{k-3}\right|=2\Leftrightarrow\left|\frac{-\left(3k-3\right)^2}{k-3}\right|=2\)

\(\Leftrightarrow\frac{9\left(k-1\right)^2}{\left|k-3\right|}=2\Leftrightarrow\left|k-3\right|=\frac{9}{2}\left(k-1\right)^2\Leftrightarrow\left(k-3\right)^2=\frac{81}{4}\left(k-1\right)^4\)

\(\Leftrightarrow\frac{81}{4}\left(k-1\right)^4-\left(k-3\right)^2=0\Leftrightarrow k=1,56;k=0,21\) 

25 tháng 11 2021

A B M C I K O E D H

a/

Ta có \(\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn) => tg AMB vuông tại M

b/ Nối I với O cắt AM tại E \(\Rightarrow IE\perp AM\)  và EA=EM (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối hai tiếp điểm) 

Ta có tg AMB vuông tại M \(\Rightarrow CM\perp AM\)

=> IE // CM (cùng vuông góc với AM)

Xét \(\Delta ACM\) có

EA=EM (cmt)

IE // CM (cmt)

=> IA=IC (trong tam giác đường thẳng // với 1 cạnh đi qua trung điểm 1 cạnh thì cũng đi qua trung điểm cạnh còn lại)

c/ Nối IB cắt MH tại K'

Ta có \(AC\perp AB;MH\perp AB\) => MH // AC

\(\Rightarrow\frac{MK'}{IC}=\frac{HK'}{IA}\) mà IA=IC => MK' = HK' (talet) => K' là trung điểm của MH mà K cũng là trung điểm của MH nên K trùng K'

=> B; K; I thẳng hàng

25 tháng 11 2021

d/

Ta có MH//AC

Xét tg ADI có \(\frac{DI}{DM}=\frac{IA}{MK}\)

Xét tg ABI có \(\frac{AB}{BH}=\frac{IA}{HK}\)

Mà MK=HK \(\Rightarrow\frac{IA}{MK}=\frac{IA}{HK}\Rightarrow\frac{DI}{DM}=\frac{AB}{BH}\Rightarrow\frac{IM+DM}{DM}=\frac{AH+BH}{BH}\)

\(\Rightarrow\frac{IM}{DM}+1=\frac{AH}{BH}+1\Rightarrow\frac{IM}{DM}=\frac{AH}{BH}\)=> BD//MH//AI (talet đảo) mà \(MH\perp AB\Rightarrow BD\perp AB\)

=> BD là tiếp tuyến (O)

24 tháng 11 2021

=81

nhe ban

Căn bậc hai cuẩ 9 là 3

24 tháng 11 2021

\(\Leftrightarrow\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)\(-\)\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)\(+\)\(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(\Leftrightarrow\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)\(-\)\(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)\(+\)\(\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow\frac{2\sqrt{x}-9-x+3\sqrt{x}-3\sqrt{x}+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

24 tháng 11 2021

500000000 +30000000+6000000+100000+30000+4000+600+50+4

24 tháng 11 2021

536134654 = 500000000 + 30000000+ 6000000+100000+30000+ 4000+ 600 + 50 + 4

HT

24 tháng 11 2021

Vì đường thẳng \(y=ax+b\)song song với đường thẳng \(y=x+3\)nên \(a=1\)

Mà đường thẳng \(y=ax+b\)đi qua điểm M(2;-6) , tức là đường thẳng \(y=x+b\)đi qua điểm M(2;-6)

\(\Rightarrow\)Điểm M(2;-6) thuộc đường thẳng \(y=x+b\)

Thay \(x=2;y=-6\)vào hàm số \(y=x+b\), ta có: \(-6=2+b\Leftrightarrow b=-8\)

Vậy \(a=1;b=-8\)