Cho hình thang ABCD, có AB // CD và AB < CD. Gọi M là giao điểm của AD và BC. Gọi H, E, F, G lần lượt là trung điểm của AM, BM, AC, BD. Chứng minh HEFG là hình thang.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
We have \(\dfrac{x^4-1}{2x-2}=\dfrac{\left(x^2-1\right)\left(x^2+1\right)}{2\left(x-1\right)}=\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}{2\left(x-1\right)}\)\(=\dfrac{\left(x+1\right)\left(x^2+1\right)}{2}=\dfrac{x^3+x^2+x+1}{2}\)
ĐKXĐ: \(2x-2\ne0\Leftrightarrow x\ne1\)
\(\dfrac{x^4-1}{2x-2}=\dfrac{(x^2)^2-1}{2x-2}=\dfrac{\left(x^2-1\right)\left(x^2+1\right)}{2\left(x-1\right)}\)
\(=\dfrac{\left(x-1\right)\left(x+1\right)(x^2+1)}{2\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x^2+1\right)}{2}\)
Ta có: \(\left(1+2a\right)\left(1-2a\right)-a\left(a+2\right)\)
\(=1-4a^2-a^2-2a\)
\(=-5a^2-2a+1\)
Ta có: \(\dfrac{x-4}{x-1}+\dfrac{x+4}{x+1}=2\) (đk: x khác 1 và -1)
\(\Leftrightarrow\dfrac{\left(x-4\right)\left(x+1\right)+\left(x+4\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=2\)
\(\Leftrightarrow\dfrac{x^2-3x-4+x^2+3x-4}{x^2-1}=2\)
\(\Rightarrow2x^2-8=2x^2-2\)
\(\Leftrightarrow0=6\) (vô nghiệm)
Vậy PT đã cho vô nghiệm
Bài 2:
a) \(5\left(x-1\right)\le6\left(x+2\right)\)
\(\Leftrightarrow5x-5\le6x+12\)
\(\Rightarrow x\ge-17\)
b) \(\dfrac{2x-1}{2}-\dfrac{x+1}{6}\ge\dfrac{4x-5}{3}\)
\(\Leftrightarrow\dfrac{3\left(2x-1\right)-\left(x+1\right)}{6}\ge\dfrac{2\left(4x-5\right)}{6}\)
\(\Rightarrow6x-3-x-1\ge8x-10\)
\(\Leftrightarrow3x\le6\)
\(\Rightarrow x\le2\)
...
\(\dfrac{x-4}{x-1}+\dfrac{x+4}{x+1}=2\)
ĐKXĐ: \(x\ne\pm1\)
\(\Leftrightarrow\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x+4\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow x^2-3x-4+x^2+3x-4=2\left(x^2-1\right)\)
\(\Leftrightarrow2x^2-8-2x^2+2=0\)
\(\Leftrightarrow-6=0\) (Vô lí)
Vậy phương trình trên vô nghiệm.
(4x2 + 8xy - 3xy2 )(-\(\dfrac{3}{4}\)x2y)
= -3x2y - 6x3y2 +\(\dfrac{9}{4}\)x3y3
4x3(2x2 - x + 5) 5x
= 20x4(2x2 - x + 5)
= 40x6 - 20x5 +100x4
\(\left(x-1\right)^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow x^2-2x+1-9\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x^2-2x+1-9x^2-2x-9=0\)
\(\Leftrightarrow-8x^2-4x-8=0\)
\(\Leftrightarrow-4\left(2x^2+x+2\right)=0\)
\(\Leftrightarrow2x^2+x+2=0\)
Xét \(\Delta=1^2-4\cdot2\cdot2=-15< 0\)
⇒ Phương trình vô nghiệm
Vậy \(S=\varnothing\).
(x-1)2 - 9 (x-1)2 = 0
(x-1)2.(1-9) =0
x-1 = 0
x = 1
Ta có: \(\left(x-1\right)^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[\left(x-1\right)-3\left(x+1\right)\right]\left[x-1+3\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{1}{2}\end{matrix}\right.\)
...
Vì H là trung điểm AM
E là trung điểm MB
⇒ HE là đường trung bình của ΔAMB
⇒ HE//AB
mà AB//CD
⇒ HE//CD (1)
Xét hình thang ABDC
(có AC và BD là 2 cạnh bên . Khác với tam giác ABCD có AD và BD là 2 cạch bên)
có G là trung điểm DB
F là trung điểm AC
⇒ FG là đường trung bình của hình thang ABDC
⇒FG//CD (2)
Từ (1) và (2) ⇒ HE//GF
⇒HEFG là hình thang (đpcm)
Bạn tự vẽ hình nha