Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có \(\widehat{BAC}\) là góc nội tiếp chắn cung BC
nên \(\widehat{BAC}=\dfrac{1}{2}\cdot\widehat{BOC}\)
Xét ΔOBC có OB=OC
nên ΔOBC cân tại O
=>\(\widehat{OBC}=\dfrac{180^0-\widehat{BOC}}{2}=90^0-\widehat{BAC}\)
b: H là trực tâm của ΔABC
=>AH\(\perp\)BC
=>\(\widehat{BAH}=90^0-\widehat{ABC}\left(1\right)\)
Xét ΔOAC có OA=OC
nên ΔOAC cân tại O
=>\(\widehat{OAC}=\dfrac{180^0-\widehat{AOC}}{2}=90^0-\dfrac{1}{2}\cdot\widehat{AOC}=90^0-\widehat{ABC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{BAH}=\widehat{OAC}\)
a: Xét (O) có
\(\widehat{ABC};\widehat{ADC}\) là các góc nội tiếp chắn cung AC
nên \(\widehat{ABC}=\widehat{ADC}\)
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Xét ΔAHB vuông tại H và ΔACD vuông tại C có
\(\widehat{ABH}=\widehat{ADC}\)
Do đó: ΔAHB~ΔACD
b: ΔAHB~ΔACD
=>\(\dfrac{AH}{AC}=\dfrac{AB}{AD}\)
=>\(AD=\dfrac{AB\cdot AC}{AH}=\dfrac{8\cdot15}{5}=8\cdot3=24\left(cm\right)\)
Bán kính của (O) là 24:2=12(cm)
Giải:
Cứ một giờ ca nô xuôi dòng được: 1 : 5 = \(\dfrac{1}{5}\) (quãng sông AB)
Cứ một giờ ca nô ngược dòng được: 1 : 7 = \(\dfrac{1}{7}\)(quãng sông AB)
3 km ứng với phân số là: (\(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)) : 2 = \(\dfrac{1}{35}\) (quãng sông AB)
Quãng sông AB dài là: 3 : \(\dfrac{1}{35}\) = 105 (km)
Đáp số: 105 km
a:
b: Phương trình hoành độ giao điểm là:
\(x^2=x+2\)
=>\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>\(\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Khi x=2 thì y=x+2=2+2=4
Khi x=-1 thì y=-1+2=1
vậy: Tọa độ giao điểm của (P) và (d) là A(2;4); B(-1;1)
c: A,B là tọa độ các giao điểm của (d) và (P)
=>A(2;4); B(-1;1)
O(0;0); A(2;4); B(-1;1)
\(OA=\sqrt{\left(2-0\right)^2+\left(4-0\right)^2}=2\sqrt{5}\)
\(OB=\sqrt{\left(-1-0\right)^2+\left(1-0\right)^2}=\sqrt{2}\)
\(AB=\sqrt{\left(-1-2\right)^2+\left(1-4\right)^2}=3\sqrt{2}\)
Xét ΔOAB có \(BO^2+BA^2=OA^2\)
nên ΔBOA vuông tại B
=>\(S_{BOA}=\dfrac{1}{2}\cdot BA\cdot BO=\dfrac{1}{2}\cdot3\sqrt{2}\cdot\sqrt{2}=3\)
a: Xét ΔOAB có OA=OB=AB
nên ΔOAB đều
=>\(\widehat{OBA}=\widehat{OAB}=\widehat{AOB}=60^0\)
Xét ΔBCO có BC=BO
nên ΔBCO cân tại B
Xét ΔBCO có \(\widehat{ABO}\) là góc ngoài tại B
nên \(\widehat{ABO}=\widehat{BOC}+\widehat{BCO}\)
=>\(2\cdot\widehat{ACD}=60^0\)
=>\(\widehat{ACD}=\dfrac{60^0}{2}=30^0\)
b: Xét ΔOAC có
OB là đường trung tuyến
\(OB=\dfrac{AC}{2}\)
Do đó: ΔOAC vuông tại O
BA=BC
mà BA=3cm
nên BC=3cm
AC=3+3=6(cm)
ΔOAC vuông tại O
=>\(OA^2+OC^2=AC^2\)
=>\(OC=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
OD+DC=OC
=>\(DC=OC-OD=3\sqrt{3}-3\left(cm\right)\)
Gọi AB là bóng của cây trên mặt đất, AC là chiều cao của cây
Theo đề, ta có: AB\(\perp\)AC tại A, AB=96m; \(\widehat{B}=50^0\)
Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}\)
=>\(AC=AB\cdot tanB=96\cdot tan50\simeq114,4\left(m\right)\)
a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
=>B,E,D,C cùng thuộc một đường tròn
b: Xét (B;BD) có
BD là bán kính
AC\(\perp\)BD tại D
Do đó: AC là tiếp tuyến của (B;BD)