Chứng minh rằng x-5>x-10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x-3}{7-x}=\frac{3}{5}\)
\(\frac{3\left(x-1\right)}{3}=\frac{7-x}{5}\)
\(x-1=\frac{7-x}{5}\)
\(5\left(x-1\right)=7-x\)
\(5x-5=7-x\)
\(5x+x=7+5\)
\(6x=12\)
\(x=2\)
\(\frac{3x-3}{7-x}=\frac{3}{5}\)
\(\Rightarrow\left(3x-3\right).5=\left(7-x\right).3\)
\(\Rightarrow15x-15=21-3x\)
\(\Rightarrow15x+3x=21+15\)
\(\Rightarrow18x=36\)
\(\Rightarrow x=2\)
\(x-\frac{3}{4}=\frac{2}{-6}\)
\(x-\frac{3}{4}=\frac{-1}{3}\)
\(x=\frac{-1}{3}+\frac{3}{4}\)
\(x=\frac{5}{12}\)
mk giải lun ak
x=2/-6+3/4
x=5/12
/ là dấu phân số nha bạn
k mk
A = \(\frac{1}{3}+\frac{13}{35}+\frac{33}{35}+\frac{61}{63}+\frac{97}{99}+\frac{141}{143}\)
\(=\left(1-\frac{2}{3}\right)+\left(1-\frac{2}{15}\right)+\left(1-\frac{2}{35}\right)+\left(1-\frac{2}{63}\right)+\left(1-\frac{2}{99}\right)+\left(1-\frac{2}{143}\right)\)
\(=\left(1+1+1+1+1+1\right)-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(=6-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=6-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=6-\left(1-\frac{1}{13}\right)\)
\(=6-1+\frac{1}{13}\)
\(=5+\frac{1}{13}\)
\(=\frac{66}{13}\)
\(\text{Vậy }A=\frac{66}{13}\)
Ta có:
a) A = |x - 2| + |x - 4| + 2017|
=> A = |x - 2| + |4 - x| + 2017 \(\ge\)|x - 2 + 4 - x| + 2017 = |2| + 2017=2019
Dấu "=" xảy ra <=> (x - 2)(4 - x) \(\ge\)0
<=> 2 \(\le\)x \(\le\)4
Vậy MinA = 2019 <=> 2 \(\le\)x \(\)4
b) Ta có: B = |2019 - x| + |2020 - x|
=> B = |x - 2019| + |2020 - x| \(\ge\)|x - 2019 + 2020 - x| = |1| = 1
Dấu "=" xảy ra <=> (x - 2019)(2020 - x) \(\ge\)0
<=> 2019 \(\le\)x \(\le\)2020
Vậy MinB = 1 <=> 2019 \(\le\)x \(\le\)2020
\(\frac{2^{19}\cdot27^4}{6^7\cdot16^3}\)
\(=\frac{2^{19}\cdot3^{12}}{2^7\cdot3^7\cdot2^{12}}\)
\(=\frac{2^{19}\cdot3^{12}}{2^{19}\cdot3^7}\)
\(=3^5\)
\(=243\)
\(\frac{2^{19}.27^4}{6^7.16^3}\)
\(=\frac{2^{19}.\left(3^3\right)^4}{2^7.3^7.\left(2^4\right)^3}\)
\(=\frac{2^{19}.3^{12}}{2^7.3^7.2^{12}}\)
=\(3^5=243\)
Ví dụ : a = 3 , b = -2 . Ta có : \(\left|a+b\right|=\left|3+(-2)\right|=\left|1\right|=1\)
Còn \(\left|a\right|+\left|b\right|=3+\left|-2\right|=3+2=5\). Do đó \(\left|a+b\right|=\left|a\right|+\left|b\right|\)là sai vì \(1\ne5\).
Chúng ta còn nhận ra rằng :
\(\left|a-b\right|=\left|3-(-2)\right|=\left|5\right|=5\)
\(\left|a\right|-\left|b\right|=\left|3\right|-\left|-2\right|=3-2=1\)
Do vậy \(\left|a-b\right|=\left|a\right|-\left|b\right|\)là sai vì \(1\ne5\).
Cho ta bài toán tương tự.Với mọi x,y \(\inℚ\)thì \(\left|a-b\right|\ge\left|a\right|-\left|b\right|\).
Nhưng nếu cho x = 3 , y = 2 hoặc x = -3 , y = -2 ta lại thấy :
\(\left|a+b\right|=\left|a\right|+\left|b\right|\)là đúng . Vậy với điều kiện nào thì \(\left|a+b\right|=\left|a\right|+\left|b\right|\)?
Không khó khắn lắm chúng ta thấy rằng \(\left|a+b\right|=\left|a\right|+\left|b\right|\)khi \(ab\ge0\)
x-5 = x-10+5= (x-10)+5 > x-10