K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

Câu hỏi của ミ★¢тƙ_⁰⁷★彡 - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2017

\(P^2=\left(1.x+1.\sqrt{1-2x-x^2}\right)^2\)

Áp dụng bđt bunhiakovsky ta có:

\(P^2=\left(1.x+1.\sqrt{1-2x-x^2}\right)^2\le\left(1^2+1^2\right)\left(x^2+\left(\sqrt{1-2x-x^2}\right)^2\right)\)

\(\Leftrightarrow P^2\le2\left(x^2+1-2x-x^2\right)=-4x+2\)

14 tháng 12 2017

\(P=x+\sqrt{1-2x-x^2}=x+\sqrt{-x^2-2x+1}.\)

\(=x+\sqrt{-\left(x^2+2x+1\right)+2}=x+\sqrt{-\left(x+1\right)^2+2}\)

16 tháng 12 2017

đang vội nên mk làm tắt nha . đk x>=-5/4

\(\Leftrightarrow2\left(x+1\right)\)\(.\left[\left(x+2\right)-\sqrt{4x+5}\right]+2 \left(x+5\right)\sqrt{x+3}\left(\sqrt{x+3}-2\right)+\)\(2x^2+6x-8=0\)

\(\Leftrightarrow\frac{2\left(x+1\right)^2\left(x-1\right)}{x+2+\sqrt{4x+5}}+\frac{2\left(x+5\right)\left(x-1\right)\sqrt{x+3}}{\sqrt{x+3}+2}+2\left(x-1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\frac{2\left(x+1\right)^2}{x+2+\sqrt{4x+5}}+\frac{2\left(x+5\right)\sqrt{x+3}}{\sqrt{x+3}+2}+2\left(x+4\right)\right]=0\)

de thấy bt trong ngoặc dương suy ra x=1 là no

14 tháng 12 2017

2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

theo yêu cầu của bạn thì đến đâ mk làm theo cách này

ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)

cách 2

\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

\(\Rightarrowđpcm\)