Khi làm những bài định m để ptbh có 1 nghiệm = .... tìm nghiệm còn lại, thì có cần định m thỏa điều kiện \(\Delta>0\)ko? Hay chỉ cần thế giá trị nghiệm vào x rồi tìm m ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(x=1\Rightarrow y=1\)
- Với \(x>1\Rightarrow y>1\)
\(\Rightarrow3^x=2^y+1\)
Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)
Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm)
\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)
\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)
\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)
\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)
Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)
Bài 4 :
a, \(x^2-2mx-4m-5=0\)
\(\Delta'=m^2-\left(-4m-5\right)=m^2+4m+4+1=\left(m+2\right)^2+1>0\forall m\)
Vậy pt luôn có 2 nghiệm pb
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-4m-5\end{cases}}\)
b, Ta có : \(A=x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=4m^2-3\left(-4m-5\right)=4m^2+12m+15\)
\(=\left(2m\right)^2+2.2m.3+9+6=\left(2m+3\right)^2+6\ge6\forall m\)
Dấu ''='' xảy ra khi m = -3/2
Vậy với m = -3/2 thì A đặt GTNN là 6
Gọi chiều dài chiều rộng ban đầu lần lượt là a ; b ( a > b > 0 )
Chu vi ban đầu hcn là 124 m ta có pt
\(2\left(a+b\right)=124\Leftrightarrow a+b=62\)(1)
Nếu chiều dài thêm 5m chiều rộng 3m thì diện tích mảnh vườn tăng 240 m2 ta có pt
\(\left(a+5\right)\left(b+3\right)=ab+240\Rightarrow3a+5b=225\)(2)
Từ (1) ; (2) ta có hệ \(\hept{\begin{cases}a+b=62\\3a+5b=225\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{85}{2}\\b=\frac{39}{2}\end{cases}}\)(tm)
BĐT Bunhiacopski:
\(P^2\le3\left(2a+2b+2c\right)=6.2021=12126\)
\(\Leftrightarrow P\le\sqrt{12126}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2021}{3}\)
Đặt \(\hept{\begin{cases}\frac{2}{x+1}=a\\\frac{1}{y}=b\end{cases}}\)
Ta có: \(\hept{\begin{cases}a+3b=-1\\a+5b=-1\end{cases}}\)
Giải hpt ta được \(\hept{\begin{cases}a=-1\\b=0\end{cases}}\)
Hay: \(\hept{\begin{cases}\frac{2}{x+1}=-1\\\frac{1}{y}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=0\end{cases}}\)
Vậy: ...
ĐẶT \(\hept{\begin{cases}\frac{2}{X+1}=a\\\frac{1}{Y}=b\end{cases}}\)
\(TC\hept{\begin{cases}a+3b=-1\\a+5b=-1\end{cases}}\)
GIẢI HỆ PHƯƠNG TRÌNH TA ĐƯỢC: \(\hept{\begin{cases}a=-1\\b=0\end{cases}}\)
HAY \(\hept{\begin{cases}\frac{2}{X+1}=-1\\\frac{1}{Y}=0\end{cases}\Rightarrow\hept{\begin{cases}X=-3\\Y=0\end{cases}}}\)
HT NHÉ BẠN
a, đk x >= -1
\(\Leftrightarrow-2\sqrt{x+1}=-8\Leftrightarrow\sqrt{x+1}=4\Leftrightarrow x+1=16\Leftrightarrow x=15\)(tm)
b, đk : x >= -1
\(\Leftrightarrow3\sqrt{x+1}=4\sqrt{x+1}-3\Leftrightarrow\sqrt{x+1}=3\Leftrightarrow x=8\)(tm)
TL :
Ko tìm nghiệm còn lại chỉ cần xác định được nghiệm phương trình nhưng nghiệm chỉ cần lớn hơn không 0 thôi
HT
TL :
Xác định tập nghiệm của phương trình là tìm ra đc nghiệm còn lại
HT