a3 + b3 + c3 = 3abc và abc ≠ 0. Tính P = ab2/(a2 + b2 – c2) + bc2/(b2 + c2 – a2) + ca2/(c2 + a2 – b2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(2x^2-x+1⋮2x+1\)
\(\Rightarrow\left(2x^2+x\right)-\left(2x-1\right)+2⋮2x+1\)
\(\Rightarrow x\left(2x+1\right)-\left(2x+1\right)+2⋮2x+1\)
\(\left(2x+1\right)\left(x-1\right)+2⋮2x+1\)
\(\Rightarrow2⋮2x+1\Rightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Nếu : 2x + 1 = 1 => x = 0 ( TM )
2x + 1 = -1 => x = -1 ( TM )
2x + 1 = 2 => x = 3/2 ( loại )
2x + 1 = -2 => x = -3/2 ( loại )
\(\Rightarrow x\in\left\{0;-1\right\}\)
\(6x^2-5x-3xy+10x\)
\(=6x^2+5x-3xy\)
\(=x\left(6x+5-3y\right)\)
\(x^3+2x^2+3x=0\)\(\Leftrightarrow x.\frac{x^3+2x^2+3x}{x}=0\)
\(\Leftrightarrow x\left(x^2+2x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+2x+3=0\end{cases}}\)
Ta sẽ c/m \(x^2+2x+3=0\) vô nghiệm.Thật vậy:
\(x^2+2x+3=\left(x+1\right)^2+2\ge2\forall x\)
Từ đó suy ra \(x^2+2x+3=0\) vô nghiệm.
Vậy : x = 0
\(\left(x+2\right)\left(2x-1\right)+1=4x^2\)
\(2x^2-x+4x-2+1=4x^2\)
\(\Rightarrow2x^2-3x+1=0\)
\(2x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
ý còn lại tham khảo bài tth
\(a,x^3=x\)
\(\Rightarrow x^3-x=0\)
\(\Rightarrow x\left(x^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}}\)
\(\Rightarrow x^2=\left(-1\right)^2=1\)
\(KL:x=0;x=1\)
c) \(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)\left(\frac{2x^3+3x^2+2x+3}{x+\frac{3}{2}}\right)=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)\left(2x^2+2\right)=0\) (bạn tự thực hiện phép chia đa thức giúp mình)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}=0\\2x^2+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\2\left(x^2+1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x^2+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\left(C\right)\\x^2=-1\left(L\right)\end{cases}}\)
Vậy đa thức có nghiệm duy nhất \(x=-\frac{3}{2}\)