cmr : với a,b,c > 0 thì : a^2+b^2+c^2 >= ab+bc+ca
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(\sqrt{a^4+a+1}-a^2\right)\left(\sqrt{a^4+a+1}+a^2\right)=a^4+a+1-a^4=a+1\) nên
\(P=\sqrt{a^4+a+1}+a^2\)
Từ giả thiết \(4a^2+\sqrt{2}a-\sqrt{2}=0\) suy ra \(a^2=\frac{-\sqrt{2}}{4}\left(a-1\right)\), do đó \(a^4=\frac{1}{8}\left(a^2-2a+1\right)\) và
\(a^4+a+1=\frac{1}{8}\left(a^2-2a+1\right)+a+1=\frac{\left(a+3\right)^2}{8}\).
Lại do giả thiết \(a>0\) suy ra \(\sqrt{a^4+a+1}=\sqrt{\frac{\left(a+3\right)^2}{8}}=\frac{a+3}{2\sqrt{2}}\).
Từ đó \(P=\sqrt{a^4+a+1}+a^2=\frac{a+3}{2\sqrt{2}}+\frac{-\sqrt{2}\left(a-1\right)}{4}=\frac{\sqrt{2}\left(a+3\right)-\sqrt{2}\left(a-1\right)}{4}=\sqrt{2}\)
Vì \(2017\) là số lẻ\(\Rightarrow2017^n\) là số lẻ
Vì \(x,y,z\inℕ\) nên sẽ xảy ra các trường hợp như sau:
TH1: \(x,y,z\) là số lẻ
\(\Rightarrow x+y,x+z,y+z\) là số chẵn\(\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)\) là số chẵn\(\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)\ne2017^n\Rightarrow\)TH1 vô lí
TH2: \(x,y,z\) là số chẵn
\(\Rightarrow x+y,x+z,y+z\) là số chẵn\(\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)\) là số chẵn\(\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)\ne2017^n\Rightarrow\)TH2 vô lí
TH3: \(x\) là số lẻ, \(y\) và \(z\) là số chẵn
\(\Rightarrow x+y,x+z\) là số lẻ và \(y+z\) là số chẵn\(\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)\) là số chẵn\(\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)\ne2017^n\Rightarrow\)TH3 vô lí
TH4: \(x\) và \(y\) là số lẻ, \(z\) là số chẵn
\(\Rightarrow x+y\) là số chẵn và \(x+z,y+z\) là số lẻ\(\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)\) là số chẵn\(\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)\ne2017^n\Rightarrow\)TH4 vô lí
TH5: \(x\) là số chẵn, \(y\) và \(z\) là số lẻ
\(\Rightarrow x+y,x+z\) là số lẻ và \(y+z\) là số chẵn\(\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)\) là số chẵn \(\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)\ne2017^n\Rightarrow\)TH5 vô lí
TH6: \(x\) và \(y\) là số chẵn, \(z\) là số lẻ
\(\Rightarrow x+y\) là số chẵn và \(x+z,y+z\) là số lẻ\(\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)\) là số chẵn\(\Rightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)\ne2017^n\Rightarrow\)TH6 vô lí
Vì không trường hợp nào thỏa mãn yêu cầu đề bài\(\Rightarrow\)không tồn tại \(\left(x+y\right)\left(x+z\right)\left(y+z\right)=2017^n\)
Áp dụng BĐT AM-GM ta có:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
Do \(a+b+c=1\)
nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng bất đẳng thức Cosi
\(\Rightarrow a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(a^2+c^2\ge2ac\)
\(\Rightarrow a^2+b^2+b^2+c^2+c^2+a^2\ge2ab+2bc+2ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\left(đpcm\right)\)
Áp dụng bất đẳng thức Cauchy
Ta có:
\(a^2+b^2\ge2\sqrt{a^2\cdot b^2}\)
Suy ra \(a^2+b^2\ge2ab\)
Ta có:
\(a^2+c^2\ge2\sqrt{a^2\cdot c^2}\)
Suy ra: \(a^2+c^2\ge2ac\)
Tương tự:
\(b^2+c^2\ge2\sqrt{b^2\cdot c^2}\)
Suy ra: \(b^2+c^2\ge2bc\)
Cộng vế theo vế:
Ta có: \(2\cdot\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
Vậy \(a^2+b^2+c^2\ge ab+bc+ca\)(đpcm)