K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

Đề sai 100%

18 tháng 8 2020

Đề sai rồi bạn ơi , những số chia hết cho 5 có tận cùng là 0 và 5 cơ mà 

18 tháng 8 2020

Áp dụng Bất Đẳng Thức Cosi ta có \(\hept{\begin{cases}\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3}{1+y}\cdot\frac{1+y}{4}\cdot\frac{1}{2}}=\frac{3x}{2}\\\frac{y^3}{1+z}+\frac{1+z}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{y^3}{1+z}\cdot\frac{1+z}{4}\cdot\frac{1}{2}}=\frac{3y}{2}\\\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{z^3}{1+x}\cdot\frac{1+x}{4}\cdot\frac{1}{2}}=\frac{3z}{2}\end{cases}}\)

Cộng vế theo vế ta được \(P+\frac{3+x+y+z}{4}+\frac{3}{2}\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow P\ge\frac{5}{4}\left(x+y+z\right)-\frac{9}{4}\)

Mà ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge9\Rightarrow x+y+z\ge3\)

Do đó \(P\ge\frac{5}{4}\cdot3-\frac{9}{4}=\frac{3}{2}\). Dấu "=" xảy ra khi x=y=z=1

Vậy minP=\(\frac{3}{2}\)khi x=y=z=1

18 tháng 8 2020

a) VT = a3 - 3a2b + 3ab2 - b3 + a3 + 3a2b + 3ab2 + b3

           = 2a3 + 6ab2 = 2a( a2 + 3b2 ) = VP ( đpcm )

b) VP = (-a)2 - 2(-a)b + b2 = a2 + 2ab + b2 = ( a + b )2 = VT ( đpcm )

c) VP = ( a + b )3 = VT ( đpcm )

d) VP = b2 - 2ab + a2 = a2 - 2ab + b2 = ( a - b )2 = VT ( đpcm )

e) VP = ( a - b )3 = VT ( đpcm )

i) VT = a2 + 2ab + b2 + a2 - 2ab + b2 = 2a2 + 2b2 = 2( a2 + b2 ) = VP ( đpcm )

h) ( a + b + c )2 + ( a + b - c )2 + ( c + a - b )2 + ( b + c - a )2

= [ ( a + b ) + c ]2 + [ ( a + b ) - c ]2 + [ ( c + a ) - b ]2 + [ ( b + c ) - a ]2

= ( a2 + b2 + c2 + 2ab + 2bc + 2ca ) + ( a2 + b2 + c2 + 2ab - 2bc - 2ca ) + ( a2 + b2 + c2 - 2ab - 2bc + 2ca ) + ( a2 + b2 + c2 - 2ab + 2bc - 2ca ) ( Chỗ này bạn khai triển các ngoặc ra nhé )

= 4a2 + 4b2 + 4c2 = 4( a2 + b2 + c2 ) = VP ( đpcm )

g) VP = a2x2 + a2y2 + b2x2 + b2y2 - ( a2y2 - 2axby + b2x2 )

           = a2x2 + a2y2 + b2x2 + b2y- a2y2 + 2axby - b2x2

           = a2x2 + 2axby + b2y2

           = ( ax + by )2 = VT ( đpcm )

Không hiểu chỗ nào thì ib nhé :D

19 tháng 8 2020

Vì AB//CD(ABCD là hình thang)

    MN//AB(Mx //AB)

=>AB//MN//CD

Xét hình thang ABCD có: 

    AB//MN//CD

    M là trung điểm của AD

=> N là trung điểm của BC(định lý về đường trung bình của hình thang)

18 tháng 8 2020

YING an Yang

18 tháng 8 2020

Đáp án nào z bạn? Chọn 1 trong 4 đáp án nha mn!

a) \(16^{^3}:8^2=\left(8.2\right)^3:8^2=8^3.2^3:8^2=\left(8^3:8^2\right).2^3=8.8=64\)

b)\(8^3.\left(0,125\right)^3=\left(8.0,125\right)^3=1^3=1\)

c)\(7^{^{200}}.\left(\frac{1}{7}\right)^{200}=\left(7.\frac{1}{7}\right)^{200}=1^{200}=1\)

d)\(4.\left(0,25\right)^3.64=4.\left(0,25\right)^3.4^3=4.\left(0,25.4\right)^3=4.1=4\)

e)....

cậu có thể tham khảo bài làm trên đây ạ, chúc cậu hok tốt ^^

19 tháng 8 2020

a)

\(P=a\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}+\frac{a}{b}=a\sqrt{\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}\)

      =\(a\sqrt{\frac{a^2\left(a+1\right)^2+2a\left(a+1\right)+1}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}=a\sqrt{\frac{\left[a\left(a+1\right)+1\right]^2}{\left[a\left(a+1\right)\right]^2}}+\frac{a}{a+1}\)

      \(=a.\frac{a\left(a+1\right)+1}{a\left(a+1\right)}+\frac{a}{a+1}=a+\frac{1}{a+1}+\frac{a}{a+1}=a+1\)

Vay P=a+1

phan b,c ap dung phan a la ra

8 tháng 10 2020

CM bài toán phụ: \(x+y+z=0\) 

CM: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) với x,y,z dương

Ta có: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}\)

\(=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\cdot\frac{x+y+z}{xyz}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Áp dụng vào ta được: \(Q=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2020}-\frac{1}{2021}\)

\(Q=2021-\frac{1}{2021}=...\)

1, C . To watch

2,  B . Is

18 tháng 8 2020

1)A                                                2)B