a;Tìm giá trị lớn nhất của B= \(\frac{5}{\left(2x-1\right)^2+3}\)
b,Cho đa thức P=2x.(x+y-1)+\(^{y^2}\)+1
- tính P, với x=-5; y=3
- Chứng minh P luôn luôn nhận gì không âm với mọi giá trị của x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow6x^2-14x+4-6x^2-12x+18-7x+3=0\)
\(\Leftrightarrow-33x=-25\Rightarrow x=\frac{25}{33}\)
2( 3x - 1 )( x - 2 ) - 6( x - 1 )( x + 3 ) = 7x - 3
<=> 2( 3x2 - 7x + 2 ) - 6( x2 + 2x - 3 ) = 7x - 3
<=> 6x2 - 14x + 4 - 6x2 - 12x + 18 = 7x - 3
<=> -26x + 22 = 7x - 3
<=> -26x - 7x = -3 - 22
<=> -33x = -25
<=> x = 25/33
<=> -36x =
\(B=-2x^2-3x+4=-2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{41}{8}\)
\(\Rightarrow B=-2\left(x+\frac{3}{4}\right)^2+\frac{41}{8}\le\frac{41}{8}\)
\("="\Leftrightarrow x=-\frac{3}{4}\)
B = -2x2 - 3x + 5
B = -2( x2 + 3/2x + 9/16 ) + 49/8
B = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4
=> MaxB = 49/8 <=> x = -3/4
Mình nghĩ đề là tìm min chứ?
Ta có: \(\Delta=m^2+2m+49=\left(m+1\right)^2+48>0\left(\forall m\right)\) (*)
Từ (*) ta thấy phương trình trên có hai nghiệm phân biệt nên ta có thể giả sử:
\(\hept{\begin{cases}x_1=\frac{-\left(m-7\right)+\sqrt{m^2+2m+49}}{8}\\x_2=\frac{-\left(m-7\right)-\sqrt{m^2+2m+49}}{8}\end{cases}}\)
\(\Rightarrow F=\left|x_1-x_2\right|=\left|\frac{1}{4}\sqrt{m^2+2m+49}\right|=\frac{1}{4}\sqrt{\left(m+1\right)^2+48}\ge\frac{1}{4}\cdot\sqrt{48}=\sqrt{3}\)
Dấu '=' xảy ra khi m=-1
Vậy \(m=-1\) thì F đạt giá trị nhỏ nhất tại \(\sqrt{3}\)
6x(3x + 5) - 2x(3x - 2) + (17 - x)(x - 1) + x(x - 18) = 0
=> (18x2 - 6x2 - x2 + x2) + (30x + 4x - 16x - 18x) - 17 = 0
=> 12x2 - 17 = 0
=> 12x2 = 17
=> x2 = 17/12
=> \(\orbr{\begin{cases}x=\sqrt{\frac{17}{12}}\\x=-\sqrt{\frac{17}{12}}\end{cases}}\)
Câu 1:Núi gì cao nhất thế giới?
Trả lời:Núi Ê-vơ-ret
Câu 2:Núi gì cao nhất Việt Nam?
Trả lời:Núi Phan-xi-pang
Câu 3:Lịch gì dài nhất?
Trả lời:Lịch sử
ks nhé!Học tốt!:))^_^
câu 1 : núi e - ve -rét
câu 2 :lịch sử
câu 3 : núi phan -xi -phăng
chúc bạn học tốt !!
a) 12 < 13; 49 > 47 => 12/49 < 13/47
b) 64 < 73; 85 > 81 => 64/85 < 73/81
c) 19 > 17; 31 < 35 => 19/31 > 17/35
d) 67/77 = 1 - 10/77; 73/83 = 1- 10/83. Mà 10/77 > 10/83 => 67/77 < 73/83.
e) 456/461 = 1 - 5/461; 123/128 = 1 - 5/128. Mà 5/461 < 5/128 => 456/461 > 123/128.
f) 149/157 = 1 - 8/157; 449/458 = 1 - 9/458. Mà 8/157 = 16/314 > 9/458 => 149/157 < 449/458.
Mình nghĩ nên bổ sung x nguyên
\(A=\frac{3\sqrt{x}-2}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)-5}{\sqrt{x}+1}=3-\frac{5}{\sqrt{x}+1}\)
Để A nguyên thì \(\frac{5}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\in\left\{1;5\right\}\Leftrightarrow x=0\)
Thay x = 0 vào thì ta có A âm vậy ............
Mình vẽ sơ đồ thì tính được nhưng không theo cách lớp 4 : Chiều dài của hình chữ nhật hơn là 72:3=24m ; chiều rộng hình chữ nhật cũ lấy (24-3):3 = 7m -> Chiều dài hình chữ nhật cũ là: 7x2 = 14m -> Diện tích, chu vi.
Gọi chiều dài là a ; chiều rộng là b
Ta có a = 2 x b
=> Diện tích hình chữ ban đầu là a x b
=> Diện tích hình chữ nhật mới là : (a + 3) x (b + 3) = a x b + 3 x a + 3 x b + 9 = a x b + 3 x (a + b) + 9
Lại có (a x b + 3 x (a + b) + 9) - a x b = 72
=> (a x b - a x b) + 3 x (a + b) + 9 = 72
=> 3 x (a + b) = 72 - 9
=> 3 x (a + b) = 63
=> a + b = 21
=> 2 x b + b = 21 (Vì a = 2 x b)
=> 3 x b = 21
=> b = 7
=> a = 14
=> Chu vi ban đầu là (7 + 14) x 2 = 42 m
Diện tích ban đầu là 7 x 14 = 98 m2
a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)=> \(\left(2x-1\right)^2+3\ge3\)
=> \(\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra <=> 2x - 1 = 0 <=> x = 1/2
Vậy MaxB = 5/3 khi x = 1/2
b) x = -5; y = 3 => P = 2. (-5).(-5 + 3 - 1) + 32 + 1 = -10. (-3) + 9 + 1 = 30 + 10 = 40
P = 2x(x + y - 1) + y2 + 1
P = 2x2 + 2xy - 2x + y2 + 1
P = (x2 + 2xy + y2) + (x2 - 2x + 1)
P = (x + y)2 + (x - 1)2 \(\ge\)0
=> P luôn nhận giá trị không âm với mọi x;y
a) Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x-1\right)^2+3\ge3\forall x\)
\(\Rightarrow\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)
hay \(B\le\frac{5}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow2x-1=0\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(maxB=\frac{5}{3}\Leftrightarrow x=\frac{1}{2}\)
b) - Thay \(x=-5\)và \(y=3\)vào biểu thức ta được:
\(P=2.\left(-5\right).\left(-5+3-1\right)+3^2+1=30+9+1=40\)
- Ta có: \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)=\left(x+y\right)^2+\left(x-1\right)^2\)
Vì \(\left(x+y\right)^2\ge0\forall x,y\); \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2\ge0\forall x,y\)
hay P luôn nhận giá trị không âm với mọi x, y ( đpcm )