1)3^10.11+3^10.5 / 3^9.2^4
2) 2^10.13+2^10.65 / 2^8.104
3) 72^2.54^2 / 108^4
4) 21^2.14.125 / 35^5.6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^4=\left(-\frac{1}{2}\right)^5=-\frac{1}{32}\)
2. \(6.3^2-24:2^3=6.9-24:8=54-3=51\)
3. \(\left(\frac{1}{4}\right)^2.\left(\frac{1}{4}\right)^3=\left(\frac{1}{4}\right)^5=\frac{1}{1024}\)
1) (-1/2).(-1/2)^4 = ( -1/2)^ 5 = -1/32
2) 6.3^2 - 24:2^3 = 6,9 - 24 : 8 = 54 - 3 = 51
3) (1/4)^2 . (1/4)^3 = ( 1/4)^5 = 1/1024
A = -a2 + 3a + 4
A = -( a2 - 3a + 9/4 ) + 25/4
A = -( a - 3/2 )2 + 25/4
-( a - 3/2 )2 ≤ 0 ∀ x => -( a - 3/2 )2 + 25/4 ≤ 25/4
Đẳng thức xảy ra <=> a - 3/2 = 0 => a = 3/2
=> MaxA = 25/4 <=> a = 3/2
\(A=-a^2+3a+4\)
\(\Rightarrow A=-a^2+3a-\frac{9}{4}+\frac{25}{4}\)
\(\Rightarrow A=-\left(a-\frac{3}{2}\right)^2+\frac{25}{4}\)
Vì \(\left(a-\frac{3}{2}\right)^2\ge0\forall a\)\(\Rightarrow-\left(a-\frac{3}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(a-\frac{3}{2}\right)^2=0\Leftrightarrow a-\frac{3}{2}=0\Leftrightarrow a=\frac{3}{2}\)
Vậy maxA = 25/4 <=> a = 3/2
\(\left(9x^2-12x+4\right)-\left(y+2\right)^2\)
\(=\left[\left(3x^2\right)-2.3x.2+2^2\right]-\left(y+2\right)^2\)
\(=\left(3x-2\right)^2-\left(y+2\right)^2\)
\(\left(9x^2-12x+4\right)-\left(y+2\right)^2\)
= \(9x^2-12x+4-\left(y^2+4y+4\right)\)
=\(9x^2-12x+4-y^2-4y-4\)
=\(9x^2-y^2-12x-4y\)
=\(\left(3x-y\right)\left(3x+y\right)-4\left(3x+y\right)\)
=\(\left(3x+y\right)\left(3x-y-4\right)\)
\(8\frac{2}{7}-\left(1\frac{1}{6}+25\%\right)=\frac{58}{7}-\left(\frac{7}{6}+\frac{1}{4}\right)=\frac{58}{7}-\frac{17}{12}=\frac{577}{84}\)
\(4\frac{3}{4}+\left(-0,37\right)+\left(-1,28\right)+\left(-2,5\right)+3\frac{1}{12}\)
\(=\frac{19}{4}+\left(-\frac{83}{20}\right)+\frac{37}{12}=\frac{3}{5}+\frac{37}{12}=\frac{221}{60}\)
\(8\frac{2}{7}-\left(1\frac{1}{6}+25\%\right)=\frac{58}{7}-\left(\frac{7}{6}+\frac{1}{4}\right)=\frac{58}{7}-\frac{17}{12}=\frac{577}{84}\)
\(100+23+x=469\) \(567-x=278-35\) \(x-120=403+60\)
\(123+x=469\) \(567-x=243\) \(x-120=463\)
\(x=469-123\) \(x=567-243\) \(x=463+120\)
\(x=346\) \(x=324\) \(x=583\)
Vậy x = 346 Vậy x = 324 Vậy : x = 583
a) 100+23+x=469
\(\Leftrightarrow123+x=469\)
\(\Leftrightarrow x=469-123\)
\(\Leftrightarrow x=346\)
b) 567-x = 278-35
\(\Leftrightarrow567-x=243\)
\(\Leftrightarrow x=567-243\)
\(\Leftrightarrow x=324\)
Đề bài là gì bạn , chẳng nhẽ tính ?
a) (9x + 1) - (4x + 2) = 9x + 1 - 4x - 2 = (9x - 4x) + (1 - 2) = 5x - 1
b) (3x3 + 1) - (3x2 - 4x + 5) = 3x3 + 1 - 3x2 + 4x - 5 = 3x3 - 3x2 + 4x + (1 - 5) = 3x3 - 3x2 + 4x - 4
a) \(\left(9x+1\right)-\left(4x+2\right)\)
\(=9x+1-4x-2\)
\(=5x-1\)
b) \(\left(3x^2+1\right)-\left(3x^2-4x+5\right)\)
\(=3x^2+1-3x^2+4x-5\)
\(=4x-4\)
a. \(\frac{n^2+1}{n+1}\in Z\)
Ta có : \(\frac{n^2+1}{n+1}=\frac{n\left(n+1\right)-n+1}{n+1}=n-1=0\)
\(\Leftrightarrow n=1\)
b. \(\frac{n^2-3}{n+2}\in Z\)
Ta có : \(\frac{n^2-3}{n+2}=\frac{n\left(n+2\right)-2n-3}{n+2}=n-\frac{2n+4-7}{n+2}=n-2-\frac{7}{n+2}\)
Để n^2 - 3 / n + 2 thuộc Z thì 7 / n + 2 thuộc Z, n thuộc Z
=> n + 2 thuộc { - 7 ; - 1 ; 1 ; 7 }
=> n thuộc { - 9 ; - 3 ; - 1 ; 5 }
a ) Để \(n^2+1⋮n+1\)
mà \(n\left(n+1\right)⋮n+1\)
\(\Rightarrow n\left(n+1\right)-n^2-1⋮n+1\)
\(\Rightarrow n^2+n-n^2-1⋮n+1\)
\(\Rightarrow n-1⋮n+1\)
\(\Rightarrow n+1-2⋮n+1\)
mà \(n+1⋮n+1\)
\(\Rightarrow2⋮n+1\left(n\inℤ\right)\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;-1;2-2\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3\right\}\)
b ) \(n^2-3⋮n+2\)
mà \(n\left(n+2\right)⋮n+2\)
\(\Rightarrow n\left(n+2\right)-n^2+3⋮n+2\)
\(\Rightarrow n^2+2n-n^2+3⋮n+2\)
\(\Rightarrow2n+3⋮n+2\)
\(\Rightarrow2n+4-1⋮n+2\)
\(\Rightarrow2\left(n+2\right)-1⋮n+2\)
mà \(2\left(n+2\right)⋮n+2\)
\(\Rightarrow1⋮n+2\)
\(\Rightarrow n+2\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{-1;-3\right\}\)
c ) \(n+3⋮n^2+2\)
\(\Rightarrow n\left(n+3\right)⋮n^2+2\)
mà \(n^2+2⋮n^2+2\)
\(\Rightarrow n\left(n+3\right)-n^2-2⋮n^2+2\)
\(\Rightarrow n^2+3n-n^2-2⋮n^2+2\)
\(\Rightarrow3n-2⋮n^2+2\)
mà \(3\left(n+3\right)⋮n^2+2\left(n+3⋮n^2+2\right)\)
\(\Rightarrow3\left(n+3\right)-3n+2⋮n^2+2\)
\(\Rightarrow3n+9-3n+2⋮n^2+2\)
\(\Rightarrow11⋮n^2+2\left(n\in Z\right)\)
\(\Rightarrow n^2+2\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow n^2=9\)
\(\Rightarrow\orbr{\begin{cases}n=3\\n=-3\end{cases}}\)
Đối chiều đề bài , ta có \(n=-3\) thỏa mãn .
1. \(\frac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\frac{3^{10}\left(11+5\right)}{3^9\cdot2^4}=\frac{3^{10}\cdot2^4}{3^9\cdot2^4}=3\)
2. \(\frac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot104}=\frac{2^{10}\cdot\left(13+65\right)}{2^8\cdot104}=\frac{2^{10}\cdot78}{2^8\cdot104}=\frac{2^8\cdot2^2\cdot2\cdot3\cdot13}{2^8\cdot2^3\cdot13}=\frac{2^8\cdot2^3\cdot3\cdot13}{2^8\cdot2^3\cdot13}=3\)
3. \(\frac{72^2\cdot54^2}{108^4}=\frac{\left(2^3\cdot3^2\right)^2\cdot\left(2\cdot3^3\right)^2}{\left(2^2\cdot3^3\right)^4}\)
\(=\frac{2^6\cdot3^4\cdot2^2\cdot3^6}{2^8\cdot3^{12}}=\frac{2^8\cdot3^{10}}{2^8\cdot3^{12}}=\frac{3^{10}}{3^{12}}=3^{-2}=\frac{1}{9}\)
4. \(\frac{21^2\cdot14\cdot125}{35^5\cdot6}=\frac{\left(3\cdot7\right)^2\cdot2\cdot7\cdot5^3}{\left(5\cdot7\right)^5\cdot2\cdot3}=\frac{3^2\cdot7^2\cdot2\cdot7\cdot5^3}{5^5\cdot7^5\cdot2\cdot3}=\frac{3^2\cdot7^3\cdot2\cdot5^3}{5^3\cdot5^2\cdot7^2\cdot7^3\cdot2\cdot3}=\frac{3^2}{5^2\cdot3\cdot7^2}=\frac{3}{1225}\)