Cho tam giác ABC vuông tại A, trung tuyến AM, biết \(\Delta ABM\) là tam giác đều có cạnh 2cm.
a,Tính độ dài AC và đường cao AH của \(\Delta ABC\)
b,Tính diện tích của \(\Delta ABC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Ta có chiều dài ban đầu là 100%, chiều rộng ban đầu là 100%
Chiều rộng mới bằng : 100% - 20% = 80% chiều rộng ban đầu
Chiều dài mới bằng : 100% + 20% = 120% chiều dài ban đầu
=> Diện tích mới bằng : 120% x 80% = 96% diện tích ban đầu
=> So với diện cũ thì diện tích mới đã giảm bằng 4% = 20m2 diện tích ban đầu
=> Diện tích ban đầu là : 20 : 4 x 100 = 500m2
Đ/số : 500m2.
a) Chứng minh AH là trục đối xứng của tam giác ABC
Xét tam giác ABC cân tại A có AH là đường cao
=> AH là đường trung trực, phân giác của tam giác ABC
=> AH là trục đối xứng của tam giác ABC (1)
b)
+) EMCB là hình thang cân
E là trung điểm của AB, M là trung điểm của AC
=> EB=MC ( Vì AB= AC) (2)
EM là đường trung bình của tam giác ABC
=> EM //=\(\frac{1}{2}\) BC (3)
(2), (3) => EMBC là hình thang cân
+) BEMH là hình bình hành
Chứng minh:
(1) => H là trung điểm BC=>BH= \(\frac{1}{2}\)BC (4)
(3), (4) => EM//=BH
=> EMBH là hình bình hành
+) AEHM là hình thoi
Chứng minh tương tự ta suy ra đc EHMA là hình bình hành có AE=AM ( vì AB= AC)
=> EHMA là hình thoi
c) Để AEHM là hình vuông
thì HE vuông AB mà HE// AC ( HE là đường trung bình tam giác ABC)
=> AC vuông AB
=> Tam giác ABC vuông cân tại A
AB=4cm
=> EB=EH=\(\frac{1}{2}\).4=2 ( cm)
Tam giác BHE vuông tại E
=> Diện tích tam giác BHE là : \(\frac{1}{2}\).BE. BH=2 (cm^2)
Phần a, dễ rồi cậu tự cm nhé
Gợi ý :( Gọi D là giao AH, EM; Cm EM là đường tb tam giác ABC => AH vuông EM tại D, DE=DM= 1/2 BH, BH= HC...)
b, xét tg cân ABC => +góc acb = góc abc (1)
+ ta có AH là đường cao => AH là trung trực
Lại có ae=eb( e là td ab)
am=mc( m là td ac)
=> em là đường tb tam giác abc => em //bc => tg emcb là h thang lại có theo (1)
=> tg emcb là hình thanh cân
+cmtt , mh là đường tb tam giác abc => mh// ba => + mh//ae(3), mh//be + mh=1/2 ab (2)
Lại có em//bc=> em// bh
=> tg bemh là hình bình hành
+ cmtt, eh là đương tb tam giác abc => +eh//am(4)
+ eh=1/2 ac (5)
Từ 3,4 => tg tg amhe là hình bh
lại có 5,2 và ab= ac ( tg abc cân )=> eh=mh
=> tg amhe là hình thoi
\(5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)
5x(x - 1) = x - 1
=> 5x(x - 1) - (x - 1) = 0
=> (5x - 1)(x - 1) = 0
=> \(\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)
x3 - 16x = 0
=> x(x2 - 16) = 0
=> \(\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x^2=16\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
http://pitago.vn/question/tinh-nhanh2004x20076-2005x20059-52303.html
Tham khảo
Có: \(\frac{1}{ab}+\frac{1}{cd}\ge\frac{4}{ab+cd}=\frac{8}{a^2+b^2+c^2+d^2}.\)
Cần CM: \(\frac{8}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{2}\)
hay: \(\left(a^2+b^2+c^2+d^2\right)^2\ge16\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge4\)
CM Bđt phụ sau: \(a^2+b^2+c^2+d^2\ge\frac{\left(a+b+c+d\right)^2}{4}\)
Thật vậy: \(4\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(c-d\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2\ge0\)(đúng)
.................
Lê Nhật Khôi cách này lúc đầu em cũng tính làm như nó ngược dấu rồi thì phải:
\(\frac{8}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{2}\)
\(\Leftrightarrow\frac{16}{2\left(a^2+b^2+c^2+d^2\right)}\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(a^2+b^2+c^2+d^2\right)}\)
\(\Leftrightarrow\left(a^2+b^2+c^2+d^2\right)^2\le16\) thế này mới đúng chứ?
_ tth_
Em không vẽ được hình, xin thông cảm
a, Ta có góc EAN= cungEN=cung EC+ cung EN
Mà cung EC= cung EB(E là điểm chính giữa cung BC)
=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)
=> tam giác AEN đồng dạng tam giác FED
Vậy tam giác AEN đồng dạng tam giác FED
b,Ta có EC=EB=EM
Tam giác EMC cân tại E => EMC=ECM
MÀ EMC+AME=180, ECM+ABE=180
=> AME = ABE
=> tam giác ABE= tam giác AME
=> AB=AM => tam giác ABM cân tại A
Mà AE là phân giác => AE vuông góc BM
CMTT => AC vuông góc EN
MÀ AC giao BM tại M
=> M là trực tâm tam giác AEN
Vậy M là trực tâm tam giác AEN
c, Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH
Vì M là trực tâm của tam giác AEN
=> \(EN\perp AN\)
Mà \(OI\perp AN\)(vì I là trung điểm của AC)
=> \(EN//OI\)
MÀ O là trung điểm của EH
=> I là trung điểm của MH (đường trung bình trong tam giác )
=> tứ giác AMNH là hình bình hành
=> AH=MN
Mà MN=NC
=> AH=NC
=> cung AH= cung NC
=> cung AH + cung KC= cung KN
Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )
NBK là góc nội tiếp chắn cung KN
=> gócKMC=gócKBN
Hay gócKMC=gócKBM
=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)
Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK
\(a,\)\(\frac{1}{1\times2}+\frac{1}{2\times3}+.......+\frac{1}{99\times100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(b,\)\(\sqrt{4}+\sqrt[3]{8}+\frac{2}{3}\)
\(=2+2+\frac{2}{3}\)
\(=4+\frac{2}{3}\)
\(=\frac{14}{3}\)
a) Vì AM là trung tuyến của \(\Delta ABC\)tại A \(\Rightarrow MB=MC\)
Vì \(\Delta ABM\)là tam giác đều có cạnh là 2cm\(\Rightarrow AB=AM=BM=2cm\)
Do đó độ dài cạnh BC là : \(2+2=4cm\)
Áp dụng định lý Py-ta-go trong tam giác vuông ABC ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
\(\Leftrightarrow AC^2=4^2-2^2=16-4=12\)
\(\Rightarrow AC=\sqrt{12}\left(cm\right)\)
b) Diện tích \(\Delta ABC\)là : \(\frac{1}{2}\left(AB.AC\right)=\frac{2.\sqrt{12}}{2}=\sqrt{12}\left(cm^2\right)\)