cho so huu ti x=2a-1/2 voi gia tri nao cua a thi
A .x la so duong
B .x la so am
C .x khong la so huu ti duong cung ko phai lai so huu ti am
giup mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)Hoặc \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x>-1\\x< 2\end{cases}}\)
\(\Leftrightarrow-1< x< 2\)
Vậy ...
b) \(\left(x-2\right).\left(x+\frac{2}{3}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\)
\(\Leftrightarrow x>2\)hoặc \(x< \frac{-2}{3}\)
Vậy \(\orbr{\begin{cases}x>2\\x< \frac{-2}{3}\end{cases}}\)
Q=1/4(1.4/2.3+2.5/3.4+3.6/4.5+...+48.51/49.50)
=1/4(2.3−2/2.3+3.4−2/3.4+4.5−2/4.5+...+49.50−2/49.50)
=1/4(1− 2/2.3+ 1− 2/3.4+ 1− 2/4.5+...+1− 2/49.50)
=1/4[48−2(1/2.3+1/3.4+...+1/49.50)]
=1/4[48−2(1/2−1/3+1/3−1/4+...+1/49−150)]
=14[48−2(1/2−1/50)]=294/25
\(\frac{1}{2}x^2y^2\left(2x+y\right)\left(2x-y\right)\)
\(=\frac{1}{2}x^2y^2\left[\left(2x\right)^2-y^2\right]\)
\(=\frac{1}{2}x^2y^2\left(4x^2-y^2\right)\)
\(=2x^4y^2-\frac{1}{2}x^2y^4\)
\(A=5-\sqrt{3-x^2+2x}\)
\(=5-\sqrt{-\left(x^2-2x-3\right)}\)
\(=5-\sqrt{-\left(x^2-2x+1-4\right)}\)
\(=5-\sqrt{-\left(x-1\right)^2+4}\)
\(A_{min}\Leftrightarrow\sqrt{-\left(x-1\right)^2+4}\)lớn nhất
Mà \(\left(x-1\right)^2\ge0\)\(\Rightarrow-\left(x-1\right)^2\le0\)
\(\Rightarrow-\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)=0\Rightarrow x=1\)
\(\Rightarrow A=5-\sqrt{4}=5-2=3\)
Vậy \(A_{min}=3\Leftrightarrow x=1\)
\(ĐKXĐ:3-x^2+2x\ge0\)
Ta co \(A=5-\sqrt{3-x^2+2x}=5-\sqrt{4-\left(x-1\right)^2}\ge5-\sqrt{4}=3\)
Dau "=" tai x = 1 (Tm ĐKXĐ)
Vay...
=>(1+x).(x:2)=330
=>(1+x).x=330.2
=>(1+x).x=660
=>(1+x).x=2.2.3.5.11
sau đấy ghép cặp vào để dc 2 số liên tiếp(vì n+1 và n là 2soos liên tiếp),x là só bé hơn
b)
Gọi 3 số đó là : a) b) c)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là số nguyên
Vì a ; b ; c số tự nhiên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là phân số
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)lớn nhất \(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}< 2\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)nhỏ nhất \(>0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Vậy 3 số tự nhiên cần tìm là : 2 ; 3 ; 6
a)
\(A=\frac{4}{6}\times10+\frac{6}{10}\times16+\frac{1}{16}\times3+\frac{1}{24}\times7+\frac{1}{28}\times5\)
\(A=\frac{20}{3}+\frac{48}{5}+\frac{3}{16}+\frac{7}{24}+\frac{5}{28}\)
\(A=\frac{11200}{1680}+\frac{16128}{1680}+\frac{315}{1680}+\frac{490}{1680}+\frac{300}{1680}\)
\(A=\frac{26433}{1680}\)
Vậy \(A=\frac{26433}{1680}\)
a) \(ĐKXĐ:x\le3\)
\(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow3-x=3-x\)(luôn đúng)
Vậy phương trình thỏa mãn với mọi x thỏa mãn ĐKXĐ.
b)\(ĐKXĐ:x\le\frac{5}{2}\)
\(\sqrt{25-20x+4x^2}+2x=5\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}=5-2x\)
\(\Leftrightarrow5-2x=5-2x\)(luôn đúng)
Vậy phương trình thỏa mãn với mọi x t/m ĐKXĐ.