K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

a)\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)

 \(A=-1\Leftrightarrow1-\frac{8}{\sqrt{x}+3}=-1\)

\(\Leftrightarrow\frac{8}{\sqrt{x}+3}=2\)

\(\Leftrightarrow\sqrt{x}+3=4\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

Vậy A = -1 \(\Leftrightarrow x=1\)

2 tháng 7 2019

b) \(A=1-\frac{8}{\sqrt{x}+3}\)

\(A\inℤ\Leftrightarrow\frac{8}{\sqrt{x}+3}\inℤ\)hay \(8⋮\left(\sqrt{x}+3\right)\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm3;\pm4\right\}\)

Mà \(\sqrt{x}+3\ge3\)nên\(\Leftrightarrow\left(\sqrt{x}+3\right)\in\left\{3;4\right\}\)

\(TH1:\sqrt{x}+3=3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

\(TH2:\sqrt{x}+3=4\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

Vậy \(x\in\left\{0;1\right\}\)thì A nguyên

2 tháng 7 2019

\(\frac{1}{a}+\frac{1}{b}=\frac{3}{2018}\Leftrightarrow2018\left(a+b\right)=3ab.\)(*)

Dễ thấy Vế trái  của (*) chia hết cho 1009 \(\Rightarrow3ab⋮1009\Rightarrow ab⋮1009\)(Do (3;1009)=1 )

Trường hợp 1: Cả 2 số a,b đều chia hết cho 1009 

Khi đó: \(\hept{\begin{cases}a=1009m\\b=1009n\end{cases}\left(m,n\inℕ^∗;m\ge n\right).}\)Thế vào (*) ta có:

\(2018\left(1009m+1009n\right)=3.1009m.1009n\)

\(\Leftrightarrow2\left(m+n\right)=3mn\)

\(\Leftrightarrow6m-9mn+6n-4=-4\)

\(\Leftrightarrow3m\left(2-3n\right)-2\left(2-3n\right)=-4\)

\(\Leftrightarrow\left(3m-2\right)\left(3n-2\right)=4\)

Mà \(m\ge n\Rightarrow3m-2\ge3n-2\);   \(m,n\inℕ^∗\Rightarrow3n-2>0\)hay \(3m-2\ge3n-2>0\)

Suy ra có 2 trường hợp

\(\hept{\begin{cases}3m-2=4\\3n-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\n=1\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1009.2\\b=1009.1\end{cases}\Leftrightarrow}}\hept{\begin{cases}a=2018\\b=1009\end{cases}}\)

Thế vào phương trình đã cho ta được: \(\frac{1}{2018}+\frac{1}{1009}=\frac{3}{2018}\)( Thỏa mãn)

\(\hept{\begin{cases}3m-2=2\\3n-2=2\end{cases}\Leftrightarrow m=n=\frac{4}{3}}\)(loại)

Trường hợp 2: Trong hai số a,b chỉ có một số duy nhất chia hết cho 1009

Do vai trò của a,b như nhau nên Giả sử \(a⋮1009\Rightarrow a=1009k\left(k\inℕ^∗\right).\)

Khi đó thế vào (*) ta có: \(2018\left(1009k+b\right)=3.1009k.b\)

\(\Leftrightarrow2.\left(1009k+b\right)=3kb\Leftrightarrow2018k=b\left(3k-2\right)\)(**)

Mà vế trái  của biểu thức trên chia hết cho 1009. Lại có b không chia hết cho 1009

Suy ra \(3k-2⋮1009\)

Khi đó \(3k-2=1009t\left(t\inℕ^∗\right)\)

\(\Leftrightarrow3k=3.336t+t+2\)

\(\Leftrightarrow3\left(k-336t\right)=t+2\)

Suy ra \(t+2⋮3\)

Với \(t+2=3\Leftrightarrow t=1\)khi đó:\(3\left(k-336\right)=3\Leftrightarrow k=337\Rightarrow a=1009.337=340033\)

Thế vào hệ phương trình đã cho \(\frac{1}{1009.337}+\frac{1}{b}=\frac{3}{2018}\Leftrightarrow b=674\)(thỏa mãn)

Với \(t+2=6\Leftrightarrow t=4\)Khi đó: \(3\left(k-336.4\right)=6\Leftrightarrow k=1346\Rightarrow a=1009.1346=1358114\)

Thế vào phương trình đầu đã cho : \(\frac{1}{1009.1346}+\frac{1}{b}=\frac{3}{2018}\Leftrightarrow b=673\)(thỏa mãn)

Với \(t+2>6\Leftrightarrow t>4\Rightarrow3k-2=1009t>1009.4\Rightarrow k>1346\)

\(\Rightarrow2018k< 2019k-1346\Leftrightarrow2018k< 673\left(3k-2\right)\Rightarrow\frac{2018k}{3k-2}< 673\)

Từ (**) ta có: \(b=\frac{2018k}{3k-2}< 673\le672\Rightarrow\frac{1}{b}\ge\frac{1}{672}>\frac{3}{2018}.\)

Mà \(\frac{1}{b}=\frac{3}{2018}-\frac{1}{a}< \frac{3}{2018}.\)Nên với \(1+2\ge6\)thì không có giá trị của a,b thỏa mãn đề bài.

Vậy các nghiệm nguyên của phương trình đã cho là

\(\left(a,b\right)=\left(1358114;673\right),\left(340033;674\right),\left(2018;1009\right).\)

2 tháng 7 2019

Ta có \(\frac{1}{a}=\frac{3}{2018}-\frac{1}{b}=\frac{3b-2018}{2018b}\)

=> \(3a=\frac{6054b}{3b-2018}=\frac{2018\left(3b-2018\right)+2018^2}{3b-2018}=2018+\frac{2018^2}{3b-2018}\)là số nguyên

=> \(\frac{2018^2}{3b-2018}\)là số nguyên 

Mà 3b-2018 chia 3 dư 1

=> \(3b-2018\in\left\{-2;1;4;1009;4036;2018^2\right\}\)

=> \(b\in\left\{672;673;674;1009;2018;1358114\right\}\)

Thay vào ta được cặp a,b và kết hợp với ĐK \(a\ge b>0\)

\(\left(a,b\right)=\left(1358114;673\right),\left(340033;674\right),\left(2018;1009\right)\)

4 tháng 3 2020

Mk chỉ tìm thấy trường hợp thỏa mãn này mà có \(a,b,c,d< 100\)

\(53^2+83^2=17^2+97^2\) (GTNN của \(a+b+c+d\) là \(53+83+17+97=250\))

\(23^2+71^2=43^2+61^2\) (GTNN của \(a+b+c+d\) là \(23+71+43+61=198\))

\(\Rightarrow GTNN\) của \(a+b+c+d=198\)

Mk sẽ cố gắng tìm thêm và tìm ra cách giải vì cả kq và cách giải mk đều ko chắc. Bạn có đáp án ko?

 
4 tháng 3 2020

Mình lạc mất đáp án rùi :(((

1) 

Vì OM là phân giác AOB nên:

AOM = MOC 

Ta có ON vuông góc với OM 

=> MON = 90 độ

Mà AOB = 180 độ (góc bẹt)

=> AOM + MON + NOB = 180 độ

Mà MON = 90 độ(cmt)

=> AOM + NOB = 180 - 90 = 90 độ(1)

Mà MOC + NOC = 90 độ (gt)

Mà AOM = MOC (cmt)

=> AOM + NOC = 90 độ(2)

Từ (1) và (2) => NOC = NOB hay On là pg COB

Vì OM là pg AOB nên

AOM = MOB 

Vì AOB = 180 (góc bẹt)

Ta có : BOM + BON + MON = 180 độ

Mà ON vuông góc OM

=> MON = 90 độ

=> AOM + NOB = 180 - 90 = 90(1)

Ta có MON = MOC + CON

Mà MOC = MOA (cmt)

=> AOM + CON = 180 độ(2)

Từ (1) và (2) 

=> CON = BON hay ON là phân giác COB

1 tháng 7 2019

Ta có: A = 6 + 52 + 53 + 54 + ... + 51996 + 51997

A = 1 + 5 + 52 + 53 + ... + 51996 + 51997

5A = 5(1 + 5 + 52 + 53 + ... + 51996 + 51997)

5A = 5 + 52 + 53 + 54 + ... + 51997 + 51998

5A - A = (5 + 52 + 53 + 54 + ... + 51997  + 51998) - (1 + 5 + 52 + 53 + ... + 51996 + 51997)

4A = 51998  - 1

A = \(\frac{5^{1998}-1}{4}\)

A= 6  + 52+   53+   54 + ..... +  5 1996+  51997

=>5A=5+52+53+54+...+51997+51998

=5A-A=(5+52+53+54+...51997+51998)-(1+5+52+53+...+51996+51997)

=4A=51998-1=>A=\(\frac{5^{1998}-1}{4}\)

Vậy ...

hc tốt