K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

Đề :)))

\(\sqrt{x+2}=\frac{5}{7}\)

\(\Leftrightarrow\left(\sqrt{x+2}\right)^2=\left(\frac{5}{7}\right)^2\)

\(\Leftrightarrow x+2=\frac{25}{49}\)

\(\Leftrightarrow x=\frac{25}{49}-2\)

\(\Leftrightarrow x=-\frac{73}{49}\)

\(\sqrt{x-2}=\frac{5}{7}\)

\(\Rightarrow\left(\sqrt{x+2}\right)^2=\left(\frac{5}{7}\right)^2\)

\(\Rightarrow x+2=\frac{25}{49}\)

\(\Rightarrow x=\frac{25}{49}-2\)

\(\Rightarrow x=-\frac{73}{49}\)

VẬY  \(X=-\frac{73}{49}\)

HỌC  TỐT

2 tháng 7 2019

Hinh ve dau ban

2 tháng 7 2019

cau này bị lỗi tui tạo câu khạc

2 tháng 7 2019

\(A=2018x^2+\left(x-1\right)^2\)

Suy ra A>=1 nên A(min)=1 \(\Leftrightarrow\)x=0

2 tháng 7 2019

Cho mk lời giải đầy đủ đi

Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy. 
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov. 
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy 
nên: 
{ góc uOz = 1/2 góc xOz 
{ góc zOv = 1/2 góc zOy 
Suy ra: 
{ 2 góc uOz = góc xOz 
{ 2 góc zOv = góc zOy 
Ta lại có: 
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù) 
=> 2 góc uOz + 2 góc zOv = 180 độ 
=> 2(góc uOz + góc zOv) = 180 độ 
=> góc uOz + góc zOv = 90 độ 
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau) 
=> Tia Ou vuông góc Tia Ov 
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau

2 tháng 7 2019

x y O A B

2 tháng 7 2019

\(-\frac{4}{7}\)

a) Xét ∆ACD và ∆BDC ta có :

DC chung

BC = AD (ABCD là hình thang cân )

ADC = BCD ( ABCD là hình thang cân)

=> ∆ACD = ∆BDC (c.g.c)

=> BDC = ACD (tg ứng) 

=> ∆DOC cân tại O

=> OC = OD

Mà AB//DC 

ABO = ODC ( so le trong) 

BAO = OCN (so le trong) 

Mà BDC = ACD (cmt)

=> OAB = ABO 

=> ∆AOB cân tại O 

=> OA = OB 

b) Xét ∆OND và ∆ONC ta có 

OC = OD (cmt)

ODC = ONC (cmt)

ON chung 

=> ∆OND = ∆ONC (c.g.c) 

=> DN = NC(1)

Mà OND + ONC = 180 độ( kề bù) 

Mà OND = ONC = 180/2 = 90 độ

=> ON vuông góc với AC(2)

Từ (1) và (2) ta có ∆ cân AOB có trung trực OM đồng thời có trung tuyến OM (3)

Chứng minh tương tự ta có :

∆OMA = ∆OMB 

=> AM = MB(4)

=> OMB + OMA = 180 độ(kề bù )

=> OMB = OMA = 180/2 = 90 độ

=> OM vuông góc với AB(5)

Từ (4) và(5) ta có :∆ cân DOC có trung trực ON đồng thời là trung tuyến ON (6)

Từ (3) và (5) => M , O , N thẳng hàng