Cho phương trình ẩn x:
\(2x^2-\left(4m-1\right)x+15-m=0\)
a, Tìm m để phương trình có 1 nghiệm là \(\frac{5}{2}\)
b, Với m vừa tìm được,giải phương trình chứa ẩn x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Leftrightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Vì \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Leftrightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
Vậy....
\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Leftrightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
\(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
nên => x+10 = 0
=> x= -10
\(3-4x\left(25-2x\right)=8x^2+x-300.\)
\(3-100x+8x^2=8x^2+x-300\)
\(3-100x=x-300\)
\(3+300=x+100x\)
\(303=101x\)
\(x=3\)
Vậy x cần tìm bằng 3
3-4x(25-2x)=8x^2 + x -300
<=> 3-100x+8x^2=8x^2 + x -300
<=>3-100x=x-300
<=>101x=303
<=>x=3
Ý a mình viết nhầm để có nghiệm là -2 nha các bạn
a) Thay x = -2 vào:
\(8+2\left(4m-1\right)+15-m=0\)
\(\Leftrightarrow21+7m=0\Leftrightarrow m=-3\)
b)Thay m = - 3 vào pt: \(2x^2+13x+18=0\Leftrightarrow\left(x+2\right)\left(2x+9\right)=0\)
Đến đây bí.