K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

bn sử dụng bất đẳng thức cô si đi

1 tháng 5 2018

Nguyễn Đại Nghĩa,bác nói cụ thể hơn được ko :v

2 tháng 5 2018

Mình bổ sung thêm :

\(\widehat{AKD}=67,5^o\Rightarrow\widehat{DAK}=22,5^o\)(Do \(\Delta ADK\)vuông tại D) (3)

\(\Delta AKH\)cân tại A (cmt) => AE vừa là đường cao đồng thời là đường trung trực của cạnh HK và là đường phân giác của \(\widehat{KAH}\)=> \(\widehat{EAK}=\widehat{EAH}=\frac{45^o}{2}=22,5^o\)(4)

Mặt khác CA là đường phân giác của \(\widehat{HCK}\)(Do ABCD là hình vuông) => CA là đường trung trực của cạnh HK (\(\Delta CHK\)vuông cân tại C (cmt)) . Hơn thế nữa, AE cũng là đường trung trực của cạnh HK (cmt) => A, E, C là 3 điểm thẳng hàng (5)

Từ (3), (4) và (5) => K là chân đường phân giác của \(\widehat{CAD}\)(K \(\in CD\))

cmtt : H là chân đường phân giác của \(\widehat{BAC}\)(H \(\in BC\))

2 tháng 5 2018

a. DB là đường chéo của hình vuông ABCD => \(\widehat{ADB}=\widehat{CDB}=\widehat{KDM}=45^o\)(t/c) 

Xét tứ giác AMKD ta có: \(\widehat{KDM}=\widehat{KAM}=\widehat{KAH}=45^o\)=> tứ giác AMKD nội tiếp (Dấu hiệu nhận biết: "đỉnh kề nhau của 1 tứ giác cùng nhìn 1 cạnh dưới 2 góc bằng nhau thì tứ giác đó là tứ giác nội tiếp")

=> \(\widehat{ADK}+\widehat{AMK}=180^o\)(Hệ quả)

ABCD là hình vuông => \(\widehat{ADK}=90^o\)=> \(\widehat{AMK}=90^o\)=> KM \(\perp AH\)(ĐPCM)

b. Chứng minh tương tự câu a ta có: ANHB là tứ giác nội tiếp và HN \(\perp AK\)

Xét \(\Delta AHK\)có: HN và KM lần lượt là 2 đường cao hạ từ đỉnh H và K và E là giao điểm của HN và KM (gt) => E là trực tâm của \(\Delta AHK\)(dhnb) => AE là đường cao thứ 3 của \(\Delta AHK\)=> AE \(\perp\)HK (đpcm)

c. \(S\Delta CHK=\frac{1}{2}CH.CK\)

\(S\Delta CHKmax\)<=> CH.CK max 

Do CH, CK >0 => CH.CK \(\le\frac{CH^2+CK^2}{2}\)=> CH.CK max = \(\frac{CH^2+CK^2}{2}\).Dấu "=" xảy ra khi và chỉ khi CH = CK 

=> BH = DK (Do BC = DC (cạnh hình vuông) và CH = CK )

Xét \(\Delta ADK\)VÀ \(\Delta ABH\)có:

AD = AB (vì ABCD là hình vuông)

\(\widehat{ADK}=\widehat{ABH}\)(\(=90^o\)

DK = BH (cmt)

=> \(\Delta ADK=\Delta ABH\)(c.g.c) => AK = AH => \(\Delta AKH\)cân tại A (Định nghĩa) => \(\widehat{AKH}=\widehat{AHK}=\frac{180^o-45^o}{2}=67,5^o\)

Xét \(\Delta CHKcó\) CH = CK => \(\Delta CHK\)vuông cân tại C => \(\widehat{CKH}=\widehat{CHK}=45^o\)

Mặt khác: \(\widehat{AKD}+\widehat{AKH}+\widehat{CKH}=180^o\)=> \(\widehat{AKD}=67,5^o\)

Xét \(\Delta ADK\)vuông tại D có: DK = AK. cos \(\widehat{AKD}\)=> AK = a. cos \(67,5^o\)=> CK = CD - DK = a - a. cos \(67,5^o\)=CH 

=a. (1 - cos\(67,5^o\)) (1)

=> S\(\Delta CHK\)max = \(\frac{1}{2}.\frac{CH^2+CK^2}{2}\)(2)

Thay (1) vào (2) => Kết quả

1 tháng 5 2018

B A D C O M E

a)+)tứ giác ABCD có 2 đường chéo bằng nhau AC=BD , vuông góc với nhau và cắt nhau tại trung điểm mỗi đường

=> Tứ giác ABCD là hình vuông

+) Tam giác AOB vuông tại O, có OA=OB=R, theo Pytago thuận:

=> \(AB^2=OA^2+OB^2=2R^2\)

Khi đó diện tích tứ giác ABCD:

\(S=AB^2=2R^2\)

b) +) góc AEC=90' ( góc nội tiếp chắn nửa đường tròn)

Ta có: góc MOC + góc MEC =180=> OMEC nội tiếp đường tròn đường kính MC

Theo Pytago thuận ta có:

\(MC^2=OM^2+OC^2=\frac{R^2}{4}+R^2=\frac{5R^2}{4}\Rightarrow MC=\frac{R\sqrt{5}}{2}\)

\(\Rightarrow S=\frac{MC^2}{4}.\pi=\frac{5R^2}{16}.\pi\)

c) MA=MC (M thuộc trung trực AC)=> tam giác MAC cân tại M=> MCA=MAC

Tương tự, ta có OAE=OEA

=> OEA=MCA

=> \(\Delta OAE~\Delta MAC\left(g.g\right)\)

\(\Rightarrow\frac{OA}{MA}=\frac{AE}{AC}\Leftrightarrow MA.AE=OA.AC=2R^2\)