Một người đi xe từ A đến B đúng giờ đã định. Sau khi đi 10 km đầu trong 12 phút, anh ta tính ra rằng nếu tiếp tục đi với vận tốc như vậy thì sẽ đến sớm hơn dự định 24 phút ,còn nếu giảm vận tốc đi 5km/h thì anh ta cũng vẫn tới B sớm hơn 10 phút so với giờ đã định. Hãy tính khoảng cách AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)
\(\Leftrightarrow\frac{x-1009}{1001}-1+\frac{x-4}{1003}-2+\frac{x+2010}{1005}-4=0\)
\(\Leftrightarrow\frac{x-1009-1001}{1001}+\frac{x-4-2006}{1003}+\frac{x+2010-4020}{1005}=0\)
\(\Leftrightarrow\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}\right)=0\)
\(\Leftrightarrow x-2010=0\)
\(\Leftrightarrow x=2010\)
V...\(S=\left\{2010\right\}\)
^^
\(\frac{x-1009}{1001}+\frac{x-4}{1003}+\frac{x+2010}{1005}=7\)
\(\Leftrightarrow\left(\frac{x-1009}{1001}-1\right)+\left(\frac{x-4}{1003}-2\right)+\left(\frac{x+2010}{1005}-4\right)=0\)
\(\Leftrightarrow\frac{x-1009-1001}{1001}+\frac{x-4-2006}{1003}+\frac{x+2010-4020}{1005}=0\)
\(\Leftrightarrow\frac{x-2010}{1001}+\frac{x-2010}{1003}+\frac{x-2010}{1005}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{1001}+\frac{1}{1003}+\frac{1}{1005}\right)=0\)
\(\Leftrightarrow x-2010=0\)
\(\Leftrightarrow x=2010\)
\(P=\left(x-2012\right)^2+\left(x+2013\right)^2=\left(2012-x\right)^2+\left(x+2013\right)^2\ge\frac{\left(2012-x+x+2013\right)^2}{1+1}\)
\(=\frac{4025^2}{2}=8100312,5\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(2012-x=x+2013\)\(\Leftrightarrow\)\(x=\frac{-1}{2}\)
nó sẽ có hai trường hợp
th1. 3x=x+8
3x-x=8
2x=8
x=8:2
x=4
th2. 3x=-x+8
3x+x=8
4x=8
x=8:4
x=2
Gọi độ dài quãng đường AB là x km (x >0)
Thời gian chạy hết quãng đường lúc đi là x/45
Thời gian chạy hết quãng đường lúc về là x/36
Đổi 50p= 5/6 giờ
Ta có phương trình:
x/36 - x/45=5/6
Giải phương trình trên ta được x=150km
Vậy...
Ta có :
\(a^3+b^3+ab=\left(a+b\right)^3-3ab\left(a+b\right)+ab=1^3-3ab+ab=1-2ab\)
\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\frac{1}{2}\Rightarrow ab\le\frac{1}{4}\)
\(\Rightarrow-ab\ge\frac{-1}{4}\Rightarrow-2ab\ge-\frac{1}{2}\Rightarrow1-2ab\ge\frac{1}{2}\)
\(\Rightarrow a^3+b^3+ab\ge\frac{1}{2}\left(đpcm\right)\)
Gọi thời gian dự định là x(h). Vận tốc ng đó đi hết 10km đầu trong 12'=1/5 giờ là 50km/h.
Theo bài ra ta có : \(50\left(t-\frac{2}{5}\right)=45\left(t-\frac{1}{6}\right)\Rightarrow t=2,5.\)
Vậy S= 105 km.
bạn làm sai rồi thì phải