Cho (P) y=x2 và đường thẳng (d): y=(m2-4)x+m2-3 (m là tham số).
a) Tìm tọa độ giao điểm của (P) với đường thẳng (d) khi m=0
b) Tìm các giá trị của tham số m để đường thẳng d luôn cắt (P) tại hai điểm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì hàm số y=ax+b song song với đường thẳng y=3x nên a=3 (1)
và hàm số đi qua điểm M(5;1) nên ta có x=5; y=1 (2)
Từ (1) và (2), ta có 3.5+b=1
<=> b= -14
Vậy hàm số y=ax+b có dạng y=3x-14
a) y=3x-14
b) xét...
-x2=2x+m ⇔x2+2x+m=0 (1)
.................. Δ'=0 hay 1-m=0
Suy ra m=1
KL:...............
\(P=\frac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\frac{\sqrt{2x}-2}{x-2}\)
\(=\frac{\sqrt{x}}{\sqrt{2}+\sqrt{x}}+\frac{\sqrt{2}}{\sqrt{2}+\sqrt{x}}=1\)
Ta có P = xy = x(k - x) = -x2 + xk
= \(-x^2+2x\frac{k}{2}-\frac{k^2}{4}+\frac{k^2}{4}=-\left(x-\frac{k^2}{4}\right)^2+\frac{k^2}{4}\le\frac{k^2}{4}\)
=> \(P_{max}=\frac{k^2}{4}\left(\text{Dấu "=" khi }x=\frac{k^2}{4}\right)\)
Vì tam giác ABC vuông tại C ; đường cao CM=> \(MC^2=MA.MB\)
\(MC^2=MA\left(AB-MA\right)=-MA^2+9MA\le\frac{81}{4}\)
=> \(MC\le\frac{9}{2}\)
Dấu "=" xảy ra khi MA = MB = 4,5 cm hay M trung điểm BC
1) y= 2x-4
HD: y=ax+b
.... song song: a=2 và b≠-1
..... A(1;-2) => x=1 và y=-2 và Δ....
a+b=-2
Hay 2+b=-2 (thay a=2)
<=> b=-4
KL:................
2) Xét PT hoành độ giao điểm của (P) và (d)
x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)
*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.
*) Theo hệ thức Viet ta có:
S=x1+x2=2(m-1) và P=x1.x2=m-3
*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
Thay S và P vào M ta có:
\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)
Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)≥\(\dfrac{15}{4}\)
Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0
Với \(n=0\)thì \(7^{2n+1}-48n-7=0⋮288\)
Với \(n=1\)thì \(7^{2n+1}-48n-7=288⋮288\)
Với \(n=2\)thì \(7^{2n+1}-48n-7=16704⋮288\)
Giả sử \(7^{2n+1}-48n-7⋮288\)với \(n=k\), tức là \(7^{2k+1}-48k-7⋮288\), ta cần chứng minh \(7^{2n+1}-48n-7⋮288\)đúng với \(n=k+1\).
Thật vậy, với \(n=k+1\), ta có \(7^{2n+1}-48n-7\)\(=7^{2\left(k+1\right)+1}-48\left(k+1\right)-7\)\(=7^{2k+2+1}-48k-48-7\)\(=49.7^{2k+1}-48k-55\)\(=49\left(7^{2k+1}-48k-7\right)+2304k+288\)\(=49\left(7^{2k+1}-48k-7\right)+288\left(8k+1\right)\)
Theo giả thiết quy nạp, ta có \(7^{2k+1}-48k-7⋮288\)và hiển nhiên \(288\left(8k+1\right)⋮288\)
Vì vậy \(49\left(7^{2k+1}-48k-7\right)+288\left(8k+1\right)⋮288\)hay ta đã chứng minh được \(7^{2n+1}-48n-7⋮288\)khi \(n=k+1\)
Vậy ta có đpcm.
Dự đoán dấu "=" xảy ra khi \(a=b=c=2\)
Chiều của BĐT là \(\le\)mà lại xuất hiện căn bậc hai nên ta sẽ nghĩ đến chuyện áp dụng BĐT Cô-si theo đánh giá từ TBN -> TBC
Ta cần tách \(\sqrt{a+2}=\sqrt{\frac{1}{k}.k\left(a+2\right)}\)Sao cho khi áp dụng Cô-si đảm bảo dấu "=" xảy ra khi \(a=2\)
Đồng thời, dấu "=" cũng xảy ra khi \(k=a+2\)hay \(k=2+2=4\)
Như vậy ta sẽ tách như sau: \(\sqrt{a+2}=\sqrt{\frac{1}{4}.4\left(a+2\right)}\le\sqrt{\frac{1}{4}}.\frac{4+a+2}{2}=\frac{1}{2}.\frac{a+6}{2}=\frac{a+6}{4}\)
Tương tự, ta có \(\sqrt{b+2}\le\frac{b+6}{4}\)và \(\sqrt{c+2}\le\frac{c+6}{4}\)
Vậy ta có \(\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}\le\frac{a+6+b+6+c+6}{4}=\frac{\left(a+b+c\right)+18}{4}=\frac{6+18}{4}=6\)(vỉ \(a+b+c=6\)) \(\Leftrightarrow\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}\le6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}4=a+2\\4=b+2\\4=c+2\end{cases}}\Leftrightarrow a=b=c=2\)
\(P=45a+20b+\dfrac{27}{b^2}+\dfrac{108}{a}\)
\(P=27\left(a+\dfrac{4}{a}\right)+\left(b+b+\dfrac{27}{b^2}\right)+18\left(a+b\right)\)
\(P\ge27.2\sqrt{\dfrac{4a}{a}}+3\sqrt[3]{\dfrac{27b^2}{b^2}}+18.5=207\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(2;3\right)\)
\(45a+20b+\frac{27\left(a+4b^2\right)}{ab^2}=45a+20b+\frac{27}{b^2}+\frac{108}{a}\)
\(=\left(\frac{108}{a}+27a\right)+\left(\frac{27}{b^2}+b+b\right)+18\left(a+b\right)\)
\(\ge108+9+18\cdot5=207\)
a, Thay m = 0 ta được (d) : y = -4x - 3
Hoành độ giao điểm (P) ; (d) tm pt
\(x^2+4x+3=0\Leftrightarrow x=-1;x=-3\)
Với x = -1 => y = 1
Với x = -3 => y = 9
Vậy (P) cắt (d) tại A(-1;1) ; B(-3;9)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m^2-4\right)x-m^2+3=0\)
\(\Delta=\left(m^2-4\right)^2-4\left(-m^2+3\right)\)
\(=m^4-8m^2+16+4m^2-12=m^4-4m^2+4=\left(m^2-2\right)^2\)
Để pt luôn có 2 nghiệm pb khi \(m^2-2\ne0\Leftrightarrow m\ne\pm\sqrt{2}\)
a.
*)với m =0 thì (d): y=-4x-3
*) Xét....: x2=-4x-3 ⇔ x2+4x+3=0
Vì 1-4+3=0 nên PT có nghiệm x1=-1 hoặc x2=-3
* )x1=-1 thì y1=1 =>A(...)
*)x2=-3 thì y2=9 => B(..)
b) Xét ...............
x2=(m2-4)x+m2-3
⇔x2-(m2-4)x-m2+3=0 (1)
a=1; b=-(m2-4); c=-m2+3
Để.......... (1) có 2 nghiệm phân biệt
Cách 1: Δ>0 (Tự làm)
Cách 2: a-b+c=1+(m2-4)-m2+3=0
Pt(1) có 2 nghiệm:
x1=-1 và x2=-(-m2+3)=m2-3
Để.... thì x1≠x2 hay: m2-3≠-1 ⇒m≠\(\pm\sqrt{2}\)
Vậy với m≠\(\pm\sqrt{2}\) thì đường thẳng d luôn cắt (P) tại hai điểm phân biệt.