1/2+1/4+1/8+1/16+1/32+ ...+ 1/2048=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{9}{6}=\frac{3\times 3}{3\times 2}=\frac{3}{2}$
$\frac{4}{6}=\frac{2\times 2}{3\times 2}=\frac{2}{3}$
Bạn lưu ý lần sau gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Số điểm còn lại là 300-30=270(điểm)
TH1: Lấy 1 điểm trong 30 điểm thẳng hàng, 1 điểm trong 270 điểm còn lại
=>Có \(30\cdot270=8100\left(đường\right)\)
TH2: Vẽ đường thẳng đi qua 30 điểm thẳng hàng
=>Có 1 đường
TH3: Lấy 2 điểm bất kì trong 270 điểm còn lại
=>Có \(C^2_{270}=36315\left(đường\right)\)
Tổng số đường thẳng vẽ được là:
36315+1+8100=44416(đường)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100=10^2\)
=>BC=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48:10=4,8(cm)
b: Xét ΔHAB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔHAC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
c: Đề sai rồi bạn
\(A=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}\\ A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ A=\dfrac{1}{2}-\dfrac{1}{100}\\ A=\dfrac{49}{100}\)
Vậy \(A=\dfrac{49}{100}\)
\(\dfrac{96}{-154}=\dfrac{96:2}{-154:2}=\dfrac{48}{-77}=\dfrac{-48}{77}\)
(x - 1)/4 = 14/x (ĐKXĐ: x ≠ 0)
(x - 1)x = 14.4
x² - x = 56
x² - x - 56 = 0
x² - 8x + 7x - 56 = 0
(x² - 8x) + (7x - 56) = 0
x(x - 8) + 7(x - 8) = 0
(x - 8)(x + 7) = 0
x - 8 = 0 hoặc x + 7 = 0
*) x - 8 = 0
x = 0 + 8
x = 8 (nhận)
*) x + 7 = 0
x = 0 - 7
x = -7 (nhận)
Vậy x = -7; x = 8
\(\dfrac{x-1}{4}=\dfrac{14}{x}\)
⇒\(\left(x-1\right)x=4\cdot14\)
⇒\(\left(x-1\right)x=56\)
⇒\(x=8\) (vì \(8-1=7\) và \(7\cdot8=56\))
Vậy \(x=8\)
a) Gọi d = ƯCLN(n + 1; n + 2)
⇒ (n + 1) ⋮ d và (n+ 2) ⋮ d
⇒ (n + 2 - n - 1) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy phân số đã cho tối giản với n ≠ -2
b) Gọi d = ƯCLN(n + 1; 2n + 3)
⇒ (n + 1) ⋮ d và (2n + 3) ⋮ d
*) (n + 1) ⋮ d
⇒ 2(n + 1) ⋮ d
⇒ (2n + 2) ⋮ d
Mà (2n + 3) ⋮ d
⇒ (2n + 3 - 2n - 2) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy phân số đã cho tối giản với n ∈ Z
c) Với n = -1, ta có:
[4.(-1) + 8]/[2.(-1) + 3] = -4
Vậy phân số đã cho không tối giản với n = -1
Em xem lại đề câu c nhé
a)gọi d = UCLN(n+1;n+2)
Ta có n+1⋮ d
n+2 ⋮ d
=> n+2-(n+1) ⋮ d
=>1⋮d
=>d=1
Vậy ps n+1/n+2 là pstg
35/2048
2047/2048 nha