K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 4 2022

Biểu thức này ko tồn tại GTNN

Nó chỉ tồn tại GTNN khi x;y;z không âm và không có 2 số nào đồng thời bằng 0 (dấu = không xảy ra khi \(x=y=z=1\) mà xảy ra khi \(\left(x;y;z\right)=\left(0;\dfrac{3}{2};\dfrac{3}{2}\right)\) cùng các hoán vị)

29 tháng 5 2023

b

b)Chứng minh góc EHF=2.EBF

Chứng minh tứ giác EHOF nội tiếp

=>góc EHF= góc EOF

mà góc EOF=2.EBF (xét đường tròn (O)

=>EHF=2.EBF

NV
23 tháng 4 2022

\(S-P=a_1^3-a_1+a_2^3-a_2+...+a_n^3-a_n\)

\(=a_1\left(a_1-1\right)\left(a_1+1\right)+a_2\left(a_2-1\right)\left(a_2+1\right)+...+a_n\left(a_n-1\right)\left(a_n+1\right)\)

Do \(a_k\left(a_k-1\right)\left(a_k+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 6

\(\Rightarrow S-P⋮6\)

Mà \(P⋮6\Rightarrow S⋮6\)

23 tháng 4 2022

Bạn xem lại đề nhé.

Nếu như căng tấm lưới với độ dài không đổi cùng với một bức tường có sẵn thành 1 hình chữ nhật thì chỉ có duy nhất 1 cách căng lưới.

DD
23 tháng 4 2022

Phương trình hoành độ giao điểm của \(\left(d\right)\) và \(\left(P\right)\) là: 

\(x^2=2mx+3\Leftrightarrow x^2-2mx-3=0\) (1) 

Phương trình (1) có hệ số \(a.c=1.\left(-3\right)=-3< 0\) nên (1) luôn có hai nghiệm phân biệt \(x_1,x_2\).

Theo hệ thức Viete ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-3\end{matrix}\right.\)

Ta có: \(\left|x_1\right|+3\left|x_2\right|=6\)

Ta có hệ: 

\(\left\{{}\begin{matrix}x_1x_2=-3\\\left|x_1\right|+3\left|x_2\right|=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{3}{x_2}\\\left|\dfrac{3}{x_2}\right|+3\left|x_2\right|=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{3}{x_2}\\x_2^2-2\left|x_2\right|+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2=-1,x_1=3\\x_2=1,x_1=-3\end{matrix}\right.\)

Với \(x_1=3,x_2=-1\Rightarrow x_1+x_2=2\Rightarrow m=1\).

Với \(x_1=-3,x_2=1\Rightarrow x_1+x_2=-2\Rightarrow m=-1\)

 

 

23 tháng 4 2022

Phương trình hoành độ giao điểm của (d) và (P) là: 

x2=2mx+3⇔x2−2mx−3=0 (1) 

Phương trình (1) có hệ số a.c=1.(−3)=−3<0 nên (1) luôn có hai nghiệm phân biệt x1,x2.

Theo hệ thức Viete ta có: 

{x1+x2=2mx1x2=−3

Ta có: |x1|+3|x2|=6

Ta có hệ: 

{x1x2=−3|x1|+3|x2|=6⇔{x1=−3x2|3x2|+3|x2|=6⇔{x1=−3x2x22−2|x2|+1=0

⇔[x2=−1,x1=3x2=1,x1=−3

Với x1=3,x2=−1⇒x1+x2=2⇒m=1.

Với x1=−3,x2=1⇒x1+x2=−2⇒m=−1

 

22 tháng 4 2022

Đặt \(x^2=u\left(u\ge0\right)\), pt đã cho trở thành \(-36u^2+97u-36=0\) (*)

pt (*) có \(\Delta=97^2-4\left(-36\right)\left(-36\right)=4225>0\)

Nên pt này có 2 nghiệm phân biệt \(\left[{}\begin{matrix}u_1=\dfrac{-97+\sqrt{4225}}{2.\left(-36\right)}=\dfrac{4}{9}\left(nhận\right)\\u_2=\dfrac{-97-\sqrt{4225}}{2\left(-36\right)}=\dfrac{9}{4}\left(nhận\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=\dfrac{4}{9}\\x^2=\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{2}{3}\\x=\pm\dfrac{3}{2}\end{matrix}\right.\)

Vậy tập nghiệm của pt đã cho là \(S=\left\{\pm\dfrac{2}{3};\pm\dfrac{3}{2}\right\}\)