K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=2x-m\Leftrightarrow x^2-2x+m=0\) (*)

Pt (*) có \(\Delta'=\left(-1\right)^2-1.m=1-m\)

Để (d) cắt (P) tại 2 điểm phân biệt \(x_1,x_2\) thì pt (*) phải có 2 nghiệm phân biệt \(x_1,x_2\) \(\Leftrightarrow\Delta'>0\Leftrightarrow1-m>0\Leftrightarrow m< 1\)

Khi \(m< 1\), áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)\(\Rightarrow y_1+y_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=2^2-2m=4-2m\)

Do đó để \(y_1+y_2+x_1^2x_2^2=6\left(x_1+x_2\right)\)\(\Leftrightarrow4-2m+m^2=6.2\)\(\Leftrightarrow m^2-2m-8=0\) (1)

pt (1) có \(\Delta'=\left(-1\right)^2-1.\left(-8\right)=9>0\)

Vậy (1) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}m_1=\dfrac{-\left(-1\right)+\sqrt{9}}{1}=4\\m_2=\dfrac{-\left(-1\right)-\sqrt{9}}{1}=-2\end{matrix}\right.\)

Như vậy để (d) cắt (P) tại 2 điểm có hoành độ và tung độ thỏa mãn yêu cầu đề bài thì \(\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)

8 tháng 5 2022

Mà do \(m< 1\) nên ta chỉ nhận trường hợp \(m=-2\)

Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ và tung độ thỏa mãn đề bài thì \(m=-2\)

8 tháng 5 2022

đk x > 0 

\(\dfrac{A}{B}=\dfrac{\dfrac{x+2\sqrt{x}}{x}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\dfrac{\sqrt{x}+2}{\sqrt{x}}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{7}{4}< 0\)

\(\Leftrightarrow\dfrac{4\sqrt{x}+4-7\sqrt{x}}{4\sqrt{x}}< 0\Leftrightarrow\dfrac{-3\sqrt{x}+4}{4\sqrt{x}}< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3\sqrt{x}+4\ne0\\-3\sqrt{x}+4< 0\\4\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{16}{9}\\x< \dfrac{16}{9}\\x\ne0\end{matrix}\right.\)

8 tháng 5 2022

\(\left\{{}\begin{matrix}9x-3y=-12\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=-11\\y=3x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

8 tháng 5 2022

Ta có a - b + c = 1 + 1 - 2 = 0 

Vậy pt có 2 nghiệm 

x = -1 ; x = 2 

8 tháng 5 2022

x2 - x - 2 = 0
<=>x2 + x - 2x -2 = 0
<=> x ( x + 1 ) - 2 ( x + 1 ) = 0 
<=> ( x - 2 ) ( x + 1 ) = 0
<=>-- x - 2 = 0
      -- x + 1 = 0
<=>-- x = 2
      -- x = - 1
  Vậy S = { 2 ; -1 }

8 tháng 5 2022

đk x >= 1 

\(x-\sqrt{x-1}=9\Leftrightarrow x-9=\sqrt{x-1}\)

\(\Leftrightarrow x^2-18x+81=x-1\Leftrightarrow x^2-19x+82=0\)

\(\Leftrightarrow x=\dfrac{19+\sqrt{33}}{2}\left(tm\right);x=\dfrac{19-\sqrt{33}}{2}\left(tm\right)\)

8 tháng 5 2022

đk x khác 0 ; 4 

\(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2}{x-4}=\dfrac{\sqrt{x}+2-2\sqrt{x}}{\sqrt{x}\left(x-4\right)}=\dfrac{2-\sqrt{x}}{\sqrt{x}\left(x-4\right)}=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

8 tháng 5 2022

đk x >= 0 ; x khác 1/4 

Ta có \(^{P=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}+1}}=\dfrac{5\sqrt{x}+1}{2\sqrt{x}+1}\)

\(\Rightarrow5\sqrt{x}+1⋮2\sqrt{x}+1\Leftrightarrow10\sqrt{x}+2⋮2\sqrt{x}+1\)

\(\Leftrightarrow5\left(2\sqrt{x}+1\right)-3⋮2\sqrt{x}+1\Rightarrow2\sqrt{x}+1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

\(2\sqrt{x}+1\) 1 -1 3 -3
x 0 loại 1 loại

 

8 tháng 5 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-\left(m-2\right)x-3=0\)

\(\Delta=\left(m-2\right)^2-4\left(-3\right)=\left(m-2\right)^2+12>0\)

Vậy (P) cắt (d) tại 2 điểm pb 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m-2\left(1\right)\\x_1x_2=-3\left(2\right)\end{matrix}\right.\)

Vì \(x_1x_2=-3< 0\)nên pt có 2 nghiệm trái dấu 

đk : \(\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)

\(-x_1=3x_2\Leftrightarrow x_1+3x_2=0\)(3) 

Từ (1) ; (3) \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1+3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_2=-\left(m-2\right)\\x_1=m-2-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-\left(m-2\right)}{2}\\x_1=\dfrac{2m-4+m-2}{2}=\dfrac{3m-6}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(\dfrac{-3\left(m-2\right)^2}{4}=-3\Leftrightarrow\left(m-2\right)^2=4\Leftrightarrow\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)

 

 

8 tháng 5 2022

ĐKXĐ : \(x;y\ne0\)

Khi đó \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x^2-xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-\dfrac{x-y}{xy}\\2x^2-xy=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(\dfrac{xy+1}{xy}\right)=0\\2x^2-xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\xy=-1\end{matrix}\right.\\2x^2-xy=1\end{matrix}\right.\)

Với x = y thì 2x2 - xy  = 1

<=> 2x2 - x2 = 1

<=> x2 = 1

<=> x = \(\pm1\) (tm) 

Khi x = -1 => y = -1

x = 1 => y = 1

Với xy = - 1 thì 2x2 - xy = 1

<=> 2x2 - (-1) = 1

<=> x2 = 0

<=> x = 0 (ktm) 

Vậy hệ có 2 nghiệm (x;y) = (1; 1) ; (-1 ; -1)