(2,0 điểm) Giải các phương trình sau:
a) $4x-5=0$;
b) $2x+1=7-x$;
c) $(x+2)(x-3)=0$;
d) \(\dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì MN // BC theo Talet ta có:
\(\dfrac{y}{20}\) = \(\dfrac{10}{15}\) = \(\dfrac{x}{12}\) => x = \(\dfrac{10}{15}\) . 12 = 8; y = \(\dfrac{10}{15}\) . 20 = \(\dfrac{40}{3}\)
Gọi quãng đường từ Phan Rang lên Đà Lạt là x ( x >0)
Theo bài ra ta có : \(\dfrac{x}{40}\) + \(\dfrac{x}{60}\) = 5
x(\(\dfrac{1}{40}+\dfrac{1}{60}\)) = 5
x = 5 : ( \(\dfrac{1}{40}+\dfrac{1}{60}\))
x = 120 (km)
a) \(ĐKXĐ:\left\{{}\begin{matrix}x+1\ne0\\x\ne0\end{matrix}\right.< =>x\ne\left\{0;-1\right\}\)
b) \(\dfrac{3}{x+1}+\dfrac{5}{x}=0\\ < =>\dfrac{3x+5\left(x+1\right)}{x\left(x+1\right)}=0\\ =>3x+5\left(x+1\right)=0\\ < =>3x+5x+5=0\\ < =>8x=-5\\ < =>x=-\dfrac{5}{8}\left(TMDK\right)\)
Vậy tập nghiệm phương trình : \(S=\left\{-\dfrac{5}{8}\right\}\)
a)
`3x+9=0`
`<=>3x=-9`
`<=>x=-3`
Vậy tập nghiệm phương trình là : \(S=\left\{-3\right\}\)
b)
`(x-4)(x+3)=0`
`<=>x-4=0` hoặc `x+3=0`
`<=>x=4` hoặc `x=-3`
Vậy tập nghiệm phương trình là : \(S=\left\{4;-3\right\}\)
c)
`5(x-2)=x+(3x-4)`
`<=>5x-10=4x-4`
`<=>5x-4x=10-4`
`<=>x=6`
Vậy tập nghiệm phương trình là : \(S=\left\{6\right\}\)
Ta có (a3 + b3) + c3 - 3abc = 0
<=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0
<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> (a + b + c).(2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc) = 0
<=> (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0 (1)
Áp dụng (1) cho bài toán ta được
(x - 1)3 + (2x - 3)3 + (3x - 5)3 - 3(x - 1)(2x - 3)(3x - 5) = 0
<=> (6x - 9)[(x - 2)2 + (x - 2)2 + (2x - 4)2] = 0
<=> \(\left[{}\begin{matrix}6x-9=0\\\left(x-2\right)^2+\left(x-2\right)^2+\left(2x-4\right)^2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{3}{2}\\6.\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
<=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0
<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> (a + b + c).(2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc) = 0
<=> (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0 (1)
Áp dụng (1) cho bài toán ta được
(x - 1)3 + (2x - 3)3 + (3x - 5)3 - 3(x - 1)(2x - 3)(3x - 5) = 0
<=> (6x - 9)[(x - 2)2 + (x - 2)2 + (2x - 4)2] = 0
<=>
<=>
a) 4x - 5=0
\(\Leftrightarrow\)4x =5
\(\Leftrightarrow\) x =\(\dfrac{5}{4}\)
b) 2x + 1 = 7 - x
\(\Leftrightarrow\)2x + x = 7-1
\(\Leftrightarrow\)3x = 6
\(\Leftrightarrow\)x = 2