từ điểm A nằm ngoài đ tròn O vẽ tiếp tuyến AB,AC vẽ đg kính CD
1)CMR:BD//OA
2)Đgttrực của CD cắt BD tại E CMR:O,C,A,E,B thuộc 1 đg tròn
3)vẽ BK vuông góc CD. CMR: AD đi qua trung điểm BK
_giúp mình bài này với, đặc biệt là câu (3) á_
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.2.3.4. ... .9 - 2.3.4. ... .9
= 2.3.4. ... .9 - 2.3.4. ... .9
= 0
\(\left\{{}\begin{matrix}4x+5y=11\\2x-3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+5y=11\\4x-6y=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}11y=11\\2x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{11}=1\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
`2^x + 2^y = 192`
Ta có: `2^7 = 128 < 192 ; 2^8 = 256 > 192`
Nên `x;y < 8`
Không mất tính tổng quát, xét:
`-> x = 1` thì `y` không phải là số tự nhiên
`-> x = 2` thì `y` không phải là số tự nhiên
`-> x = 3` thì `y` không phải là số tự nhiên
`-> x = 4` thì `y` không phải là số tự nhiên
`-> x = 5` thì `y` không là số tự nhiên
`-> x = 6` thì `y` không phải là số tự nhiên
`-> x = 7` thì `y = 6` (Thỏa mãn)
Vậy ` (x;y) = (7;6); (6;7)`
14: \(24\left(15+30+85-120\right):10\)
\(=24\cdot\left(100+30-120\right):10\)
\(=24\cdot10:10=24\)
15: \(27+73-30:\left(25-10\right)\)
=100-30:15
=100-2=98
\(15-25\cdot8:\left(100\cdot2\right)\)
=15-200:200=15-1=14
16: \(18-4\left(27-90+73\right):10\)
=18-4(100-90):10
=18-4=14
`4.2017 - 16x = 100 - 32`
`=> 8068 - 16x = 68`
`=> 16x = 8068 - 68`
`=> 16x = 8000`
`=> x = 8000 : 16`
`=> x = 500`
Vậy `x = 500`
4.2017-16.X=68
8068-16X=68
16X=8068-68
16X=8000
X=8000:16
X=500
⇒X=500
A B C D O E F K M G
a/
\(\widehat{CBD}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow BD\perp BC\)
\(OA\perp BC\) (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì đường nối điểm đó với tâm vuông góc với dây cung nối 2 tiếp điểm)
=> BD//OA (Cùng vuông góc với BC)
b/
BD//OA (cmt) => DE//OA (1)
Xét tg vuông ODE và tg vuông COA có
\(\widehat{EDO}=\widehat{AOC}\) (góc đồng vị)
OD=OC (bán kính (O))
=> tg ODE = tg COA (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)
=> DE=OA (2)
Từ (1) và (2) => AEDO là hình bình hành (Tứ giác có 1 cặp cạnh đối // và băng nhau là hbh)
=> AE//CD (cạnh đối hbh) \(\Rightarrow\widehat{AEO}=\widehat{EOD}=90^o\) (góc so le trong)
Ta có E; B; C cùng nhìn OA dưới 3 góc bằng nhau và bằng \(90^o\)
=> E; B; C cùng nằm trên đường tròn đường kính OA => O; C; A; E; B thuộc 1 đường tròn)
c/ AD cắt OE và BK lần lượt tại G và M
\(BK\perp CD\left(gt\right);OE\perp CD\left(gt\right)\) => BK//OE
\(\Rightarrow\dfrac{BM}{EG}=\dfrac{KM}{OG}\)
Mà AEDO là hbh (cmt) => EG=OG (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> BM=KM