K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

\(a,x^2+2xy-9+y^2\)

\(=x^2+2xy+y^2-9\)

\(=\left(x+y\right)^2-9\)

\(=\left(x+y+9\right)\left(x+y-9\right)\)

\(b,x^4+64\)

\(=\left(x^2\right)^2+16x^2+64-16x^2\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2+8-4x\right)\left(x^2+4x+8\right)\)

14 tháng 10 2019

Với mọi x, y

A chia hết cho B

<=> \(x^4y^3+3x^3y^3+x^2y^n⋮4x^ny^2\)

Khi đó: \(x^4;x^3;x^2⋮x^n\Rightarrow n\le2\)

\(y^3;y^n⋮y^2\Rightarrow n\ge2\)

Từ 2 điều trên => n = 2.

27 tháng 10 2019

nhanh

13 tháng 10 2019

Sử dụng: 

\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)

Áp dụng vào bài:

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)

\(=\left(a-1+b-2+c-3\right)\)\(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)

\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]

<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))

<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

<=>  a = 1 hoặc b = 2 hoặc c = 3.

Không mất tính tổng quát: g/s : a = 1

Khi đó: b + c =5

Ta có:  \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)

\(=\left(b-2+c-3\right).A\)

\(=\left(b+c-5\right).A\)

\(=0.A=0\)

Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)

Tương tự b = 2; c= 3 thì T = 0.

Vậy T = 0.

14 tháng 10 2019

Chia hình chữ nhật 4 x 3 thành 24 hình chữ nhật \(\frac{1}{2}\times1\).

Diện tích mỗi hình chữ nhật \(\frac{1}{2}\times1\) là \(\frac{1}{2}\left(cm^2\right)\)

G/s : Mỗi  hình chữ nhật  chỉ chứa ít hơn 3 điểm 

Tổng số điểm của hình chữ nhật  3 x 4 thì sẽ < 2.24 = 48 điểm <49 điểm ( vô lí)

=> Theo nguyên lí Dirichlet sẽ tồn tại một hình chữ nhật \(\frac{1}{2}\times1\)  chứa ít nhất  3 điểm trong 49 điểm đã cho.

Tam giác có 3 đỉnh nằm trong hình chữ nhật \(\frac{1}{2}\times1\) nên diện tích < \(\frac{1}{2}\left(cm^2\right)\)

Vậy ....

13 tháng 10 2019

cái này phải  dùng nguyên lí đi rích lê

nguyên lí đi dép lê á? :)))

13 tháng 10 2019

Tự vẽ hình nhé bạn

a) * Xét \(\Delta\)ABC có :

M là trung điểm AB

N là trung điểm BC

\(\Rightarrow\)MN là đường trung bình của \(\Delta\)ABC

\(\Rightarrow\)MN // AC hay MN // AQ ( 1 )

* Xét \(\Delta\)ABC  có :

Q là trung điểm AC 

N là trung điểm BC

\(\Rightarrow\)QN là đường trung bình của \(\Delta\)ABC 

\(\Rightarrow\)QN // AB hay QN // AM ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)Tứ giác AQNM là hình bình hành mà có một góc vuông nên nó là hình chữ nhật.

b) Dễ thấy : \(\Delta\)AIM = \(\Delta\)BNM ( c - g - c )

\(\Rightarrow\)Góc AIM = Góc BNM ( 2 góc tương ứng )

Mà hai góc này ở vị trí so le trong nên IA // BN ( 3 )

Dễ thấy : \(\Delta\)KAQ = \(\Delta\)NCQ ( c - g - c )

\(\Rightarrow\)Góc AKQ = Góc CNQ ( 2 góc tương ứng )

Mà hai góc này ở vị trí so le trong nên AK // NC ( 4 )

Từ ( 3 ) và ( 4 ) \(\Rightarrow\)Ba điểm I, A, K thẳng hàng ( theo tiên đề Ơ - clit )

c) Ta có :

AI = BN ( cmt ) và AK = NC ( cmt )

Mà BN = NC nên AI = AK 

13 tháng 10 2019

ủa hình như góc AIM với góc BNM đâu có so le trong ?

12 tháng 10 2019

Ta co:

\(\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\)

\(=\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\left(ab+bc+ca\right)\le\text{ }\frac{\left[a^2+b^2+c^2+2\left(ab+bc+ca\right)\right]^3}{27}\)

\(\frac{\left[a^2+b^2+c^2+2\left(ab+bc+ca\right)\right]^3}{27}=\frac{\left(a+b+c\right)^6}{27}=\frac{3^6}{27}=27\)

Dau '=' xay ra khi \(a=b=c=1\)

12 tháng 10 2019

Sửa đề: chứng minh:\(\frac{a^2}{\sqrt{12b^2+11bc+2c^2}}+\frac{b^2}{\sqrt{12c^2+11ca+2a^2}}+\frac{c^2}{\sqrt{12a^2+11ca+2b^2}}\ge\frac{3}{5}\)

Ta có: \(12b^2+11bc+2c^2=\frac{1}{4}\left(7b+3c\right)^2-\frac{1}{4}\left(b-c\right)^2\le\frac{1}{4}\left(7b+3c\right)^2\)

Do đó: \(\frac{a^2}{\sqrt{12b^2+11bc+2c^2}}\ge\frac{2a^2}{7b+3c}\).Tương tự hai BĐT còn lại rồi cộng theo vế thu được:

\(VT\ge\frac{2a^2}{7b+3c}+\frac{2b^2}{7c+3a}+\frac{2c^2}{7a+3b}\)

\(=2\left(\frac{a^2}{7b+3c}+\frac{b^2}{7c+3a}+\frac{c^2}{7a+3b}\right)\ge\frac{2\left(a+b+c\right)^2}{10\left(a+b+c\right)}=\frac{3}{5}\)(áp dụng BĐT Cauchy-Schwarz dạng Engel)

Ta có đpcm. Đẳng thức xảy ra khi a = b = c = 1

P/s: Is that true? Thấy đề nó là lạ nên sửa thôi chứ ko chắc rằng mình sửa đúng..

13 tháng 10 2019

@Cool Kid: Cách của mình"

Đầu tiên ta xét hiệu: \(12b^2+11bc+2c^2-x\left(b-c\right)^2\). Ta chọn x để biểu thức sau khi phân tích có dạng một số chính phương.

\(=\left(12-x\right)b^2+\left(11+2x\right)bc+\left(2-x\right)c^2\)

\(=\left(12-x\right)\left(b+\frac{\left(11+2x\right)c}{2\left(12-x\right)}\right)^2+\left(2-x\right)c^2-\frac{\left(11+2x\right)^2c^2}{4\left(12-x\right)}\)

\(=\left(12-x\right)\left(b+\frac{\left(11+2x\right)c}{2\left(12-x\right)}\right)^2+c^2\left[\left(2-x\right)-\frac{\left(11+2x\right)^2}{4\left(12-x\right)}\right]\)

Đến đây thì ý tưởng đã rõ, ta chọn x sao cho 12 - x > 0 và:

\(\left(2-x\right)-\frac{\left(11+2x\right)^2}{4\left(12-x\right)}=0\). Bấm máy tính ta suy ra \(x=-\frac{1}{4}\)

Từ đó có thể dễ dàng suy ra cách phân tích bên trên