Chứng minh rằng S=11+22+33+...+20392039 không là lũy thừa của một số nguyên dương với số mũ lớn hơn 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13$ (cm)
Xét tam giác $BAH$ và $BCA$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BAH\sim \triangle BCA$ (g.g)
$\Rightarrow \frac{BA}{BH}=\frac{BC}{BA}$
$\Rightarrow AB^2=BH.BC$
Theo tính chất về tia phân giác ta có:
$\frac{AE}{EC}=\frac{AB}{BC}=\frac{5}{13}$
$\Rightarrow \frac{AE}{AC}=\frac{5}{18}$
$\Rightarrow AE=\frac{5}{18}.AC=\frac{5}{18}.12=\frac{10}{3}$ (cm)
$CE=AC-AE=12-\frac{10}{3}=\frac{26}{3}$ (cm)
Nhớ tick cho mình nha
\(\dfrac{1}{3}\)x2 + \(\dfrac{1}{x^2}\) - 8x + 32 = \(\dfrac{1}{x^2}\) - 2x + 8 ĐK: x ≠ 0
⇔\(\dfrac{1}{3}\)x2 + \(\dfrac{1}{x^2}\) - \(\dfrac{1}{x^2}\) - 8x + 2x + 32 - 8 = 0
⇔\(\dfrac{1}{3}\)x2 - 6x +24 = 0
⇔\(\left(x-12\right)\) \(\left(x-6\right)\) = 0
⇔\(\left[{}\begin{matrix}x-12=0\\x-6=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=12\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
⇒ S = \(\left\{12;6\right\}\)
Vì diện tích mặt bên gắn với chiều rộng là 12 cm2 nên diện tích mặt bên đó bằng chiều rộng nhân với chiều cao.
Từ lập luận trên ta có:
Chiều rộng của hình hộp chữ nhật là:
12 : 4 = 3 (cm)
Thể tích của hình hộp chữ nhật là:
5 \(\times\) 3 \(\times\) 4 = 60 (cm3)
Diện tích xung quanh của hình hộp chữ nhật là:
( 5 + 3) \(\times\) 2 \(\times\) 4 = 64 (cm2)
Diện tích hai mặt đáy của hình hộp chữ nhật là:
5 \(\times\) 3 \(\times\) 2 = 30 (cm2)
Diện tích toàn phần của hình hộp chữ nhật là:
64 + 30 = 94 (cm2)
Kết luận: Thể tích hình hộp chữ nhật 60 cm3
Diện tích toàn phần của hình hộp chữ nhật là: 94 cm2
- Dễ dàng nhận thấy \(x=-1\) không phải là 1 nghiệm của đa thức P(x).
- Gọi b là 1 nghiệm của đa thức \(P\left(x\right)=x^3+3x^2-1\)
Do đó: \(b^3+3b^2-1=0\)
\(\Rightarrow\left(b^3+3b^2+3b+1\right)-3\left(b+1\right)+1=0\)
\(\Rightarrow\left(b+1\right)^3-3\left(b+1\right)+1=0\)
\(\Rightarrow\dfrac{\left(b+1\right)^3-3\left(b+1\right)+1}{\left(b+1\right)^3}=0\)
\(\Rightarrow\left(\dfrac{1}{b+1}\right)^3-3.\left(\dfrac{1}{b+1}\right)^2+1=0\)
\(\Rightarrow\left(-\dfrac{1}{b+1}\right)^3+3.\left(-\dfrac{1}{b+1}\right)^2-1=0\)
Thay \(x=-\dfrac{1}{b+1}\) vào \(P\left(x\right)=x^3+3x^2-1\) ta được:
\(P\left(-\dfrac{1}{b+1}\right)=\left(-\dfrac{1}{b+1}\right)^3+3.\left(-\dfrac{1}{b+1}\right)^2-1=0\)
\(\Rightarrow-\dfrac{1}{b+1}\) là một nghiệm của đa thức P(x).
Đặt \(a=-\dfrac{1}{b+1}\Rightarrow ab+a+1=0\) \(\Rightarrowđpcm\)