K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x3 - x2 - 3x+ 6x - 3

x3 - x2 - 3x+ 3x + 3x - 3 

= x2 ( x - 1 ) - 3x ( x - 1 ) + 3 ( x - 1 )

= ( x - 1 ) ( x2 - 3x + 3 )

27 tháng 12 2019

bài này mình chưa học nên xin lỗi bạn

28 tháng 12 2019

(2x - 3)2 = (x - 2)3 - x(3 + x2 - 10x)

4x2 - 12x + 9 = x3 - 4x2 + 4x - 2x2 + 8x - 8 - 3x - x3 + 10x2

4x2 - 12x + 9 = 4x2 + 9x - 8

-12x + 9 = 9x - 8

9 = 9x - 8 + 12x

9 = 21x - 8

9 + 8 = 21x

17 = 21x

17/21 = x

=> x = 17/21

27 tháng 12 2019

bài này mình chưa học nhưng nó tương tự như bài này dưới đây mình đã học

Xét tam giác ABC:

Ta có: EB = EA, FA = FC (gt)

Nên EF // BC, EF = 1/2  BC.

Xét tam giác BDC có: HB = HD, GD = GC (gt)

Nên HG // BC, HG =  1/2  BC.

Do đó EF //HG, EF = HG.

Tương tự EH // FG, EH = FG

Vậy EFGH là hình bình hành.

a) EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AD ⊥ BC

b) EFGH là hình thoi ⇔ EH = EF ⇔ AD = BC

c)  EFGH là hình vuông ⇔ AD ⊥ BC và AD = BC

27 tháng 12 2019

Kiểm tra lại đề bài nhé.

Với a = 2; b = 2; c = -1 thỏa mãn đề bài : (a+b+c)^2 = a^2 + b^2 + c^2 

Nhưng không thỏa mãn đẳng thức cần chứng minh.

27 tháng 12 2019

\(\left(2x^2-3\right)^2=\left(x-2\right)^3-x\left(3+x^2-10x\right)\)

\(\Leftrightarrow4x^4-12x^2+9=x^3-6x^2+12x-8-3x-x^3+10x^2\)

\(\Leftrightarrow4x^4-12x^2+9=4x^2+9x-8\)

\(\Leftrightarrow4x^4-12x^2+9-4x^2-9x+8=0\)

\(\Leftrightarrow4x^4-16x^2-9x+17=0\)

Giải nghiệm ta được \(S=\left\{\frac{2258}{2671};2,02\right\}\)

27 tháng 12 2019

Ờm... (2x2 - 3)?

Ta có

         \(x^3-6x^2+x^2y+9x-3y\\ =\left(x^3-6x^2+9x\right)+\left(x^2y-3y\right)\\ =x\left(x^2-3\right)^2+y\left(x^2-3\right)\)

    =(x^2-3)(x+y)

26 tháng 12 2019

\(\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\frac{2x+4-2x+4}{x^2-4}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{8}{x^2-4}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

26 tháng 12 2019

Ta có:

\(\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2x+4}{x^2-4}-\frac{2x-4}{x^2-4}\right).\frac{x^2+4x+4}{8}\)

\(=\frac{0}{x^2-4}.\frac{x^2+4x+4}{8}\)

\(=0.\frac{x^2+4x+4}{8}\)

\(=0\)

26 tháng 12 2019

Ta có: \(x^2+4x+9=\left(x^2+2.x.2+2^2\right)+5\)

                                     \(=\left(x+2\right)^2+5\)

Vì \(\left(x+2\right)^2\ge0\) với mọi x

=> \(\left(x+2\right)^2+5\)\(\ge5\)

hay: \(x^2+4x+9\)\(\ge5\)

Dấu "=" xảy ra <=> x = -2

Vậy: Min \(x^2+4x+9\)= 5 <=> x = -2

26 tháng 12 2019

\(x^2+4x+9=\left(x^2+4x+4\right)+5\)

\(=\left(x+2\right)^2+5\ge5\)

(Dấu "="\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\))

26 tháng 12 2019

A)
~Ta có AB // DC ( ABCD là hbh )
=> BM // CN ( M THuộc AB , N thuộc DC ) (1)
~Ta có M là trung điểm AB , N là trung điểm DC => MN là đường trung bình của hbh ABCD => MN // BC (2)
Từ (1) và (2) => BCMN là hbh , (*)
Ta có : M là trung điểm AB => BM = 1/2 AB
Lại có BC = 1/2 AB ( giả thuyết )
=> BM = BC (**)
từ (*) và (**) => BCMN là hthoi. ( hbh có 2 cạnh bên bằng nhau là hình thoi )
B)
~ Ta có MB // DN ( AB // DC ) (3 )
có MB = 1/2 AB , DN = 1/2 DC
=> MB = DN ( vì AB = DC ) (4)
từ (3) và (4) => DMBN là hbh
C)
Ta có : E là trung điểm MD ( ADNM là hbh )
F là tđ MC ( MBNC là hbh )
xét tam giác MDC có : E là tđ MD , F là tđ MC => EF là dd` trung trực tam giác DMC
=> EF // DC => EFCD là hình thang
Time anh k cho phép nên anh chưa giải câu D được. nếu cần thì ib anh nha ^^