Cho tam giác ABC . Tìm điểm M sao cho: \(\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi điểm I thỏa mãn : \(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\), do ABC cố định nên điểm I là cố định
ta có :
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|=\)\(\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+3\overrightarrow{MI}+3\overrightarrow{IC}\right|=\left|5\overrightarrow{MI}\right|=5MI\) nhỏ nhất khi M là hình chiếu của I lên đường thẳng d
x2 - 6x + 5 = 0
<=> x2 - x - 5x + 5 = 0
<=> x(x - 1) - 5(x - 1) = 0
<=> (x - 5)(x - 1) = 0
<=> \(\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
x^2 - 6x + 5 = 0
<=> x^2 - 5x - x + 5 =0
<=> (x^2 - x) - (5x - 5)=0
<=> x(x-1) - 5(x-1)
<=> (x-5)(x-1)=0
<=>[x-5=0
[x-1=0
<=>x=5 hoặc x = 1
ta có hệ sau :
\(\hept{\begin{cases}a.3^2+b.3-1=-7&-\frac{b}{2a}=1&\end{cases}\Leftrightarrow\hept{\begin{cases}9a+3b=-6\\b=-2a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=4\end{cases}}}\)
vậy \(2a+b=0\)
Biết rằng parabol (P): y=ax2+bx-1 qua điểm A(3;-7) và có hoành độ đỉnh bằng 1. Tính giá trị của biểu thức 2a+b . Các bạn ơi đề bài bị sai dề bài này mới chính xác
HT nha bạn
#Hoàng Đức Tùng#