Cmr 30k^2+73k+93>0 với mọi k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(a\left(b+c\right)-b\left(a+c\right)-c\left(b-a\right)\)
\(=ab+ac-ba-bc-cb+ac\)
\(=2ac-2bc\)
b, \(\left(-3x^2\right)\left(2x^2+4x-\frac{1}{2}\right)=-6x^4-12x^3+\frac{3}{2}x^2\)
a, \(3\left(x+1\right)-5=2x+7\)
\(\Leftrightarrow3x+3-5=2x+7\Leftrightarrow x=9\)
b, \(x-2=6\left(x-1\right)+1\)
\(\Leftrightarrow x-2=6x-6+1\Leftrightarrow-5x=-3\Leftrightarrow x=\frac{3}{5}\)
a) 3( x + 1 ) - 5 = 2x + 7
<=> 3x + 3 - 5 = 2x + 7
<=> 3x - 2x = 7 - 3 + 5
<=> x = 9
b) x - 2 = 6( x - 1 ) + 1
<=> x - 2 = 6x - 6 + 1
<=> x - 6x = -6 + 1 + 2
<=> -5x = -3
<=> x = 3/5
\(A=\left(0,3.5-0,5:\frac{1}{3}\right)\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)
\(A=\left(0,3.5-0,5.3\right)\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)
\(A=\left(1,5-1,5\right)\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)
\(A=0.\left(\frac{1}{2006^2}+\frac{1}{2008^2}\right)\)
\(A=0\)
VẬY \(A=0\)
(0,3.5-0,5:1/3).(1/2006^2+1/2008^2)
(1,5-1,5).(1/200^2+1/2008^2)
0.(1/2006^2+1/2008^2)
0
a, dễ nhé
b, \(\frac{z}{x}=\frac{-3}{5}\Leftrightarrow\frac{z}{-3}=\frac{x}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{z}{-3}=\frac{x}{5}=\frac{40x+70z}{-120+350}=\frac{1000}{230}=\frac{100}{23}\)
tự thay nhé
c, Đặt \(\hept{\begin{cases}x=5k\\y=6k\\z=7k\end{cases}}\)
Ta có : \(xyz=-1680\)
\(\Leftrightarrow5k.6k.7k=-1680\)
\(\Leftrightarrow210k^3=-1680\Leftrightarrow k^3=-8\Leftrightarrow k=-2\)
\(\Rightarrow\hept{\begin{cases}x=-10\\y=-12\\z=-14\end{cases}}\)
d, Theo bài ra ta có : \(2x=3y=4z\Leftrightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\)
Áp dụng t/c dãy tỉ số bằng nhau ra luôn nhé
a,Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{x}{10}=\frac{y}{7}=\frac{z}{23}=\frac{2x+y-z}{20+7-23}=\frac{12}{4}=3\)
\(x=30;y=21;z=69\)
b, Theo bài ra ta có :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)(*)
\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\)(**)
Từ (*) ; (**) ta có : \(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}\)
Áp dung t/c dãy tỉ số bằng nhau
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(x=42;y=63;z=36\)
Bài giải
a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{10}=\frac{y}{7}=\frac{z}{23}=\frac{2x}{20}=\frac{2x+y-z}{20+7-23}=\frac{12}{4}=3\)
\(\Rightarrow\hept{\begin{cases}x=3\cdot10=30\\y=3\cdot7=21\\z=3\cdot23=69\end{cases}}\)
Vậy \(\left(x\text{ ; }y\text{ ; }z\right)=\left(30\text{ ; }21\text{ ; }69\right)\)
b, Ta có :
\(\frac{x}{2}=\frac{y}{3}\text{ }\Rightarrow\text{ }\frac{x}{14}=\frac{y}{21}\)
\(\frac{y}{7}=\frac{z}{4}\text{ }\Rightarrow\text{ }\frac{y}{21}=\frac{z}{12}\)
\(\Rightarrow\text{ }\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
( Áp dụng tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}x=3\cdot14=42\\y=3\cdot21=63\\z=3\cdot12=36\end{cases}}\)
Vậy \(\left(x\text{ ; }y\text{ ; }z\right)=\left(42\text{ ; }63\text{ ; }36\right)\)
1)
Do tổng 4 góc trong 1 tứ giác = 360 độ (tính chất)
=> M + N + P + Q = 360 độ
=> 120 + 3P= 360
=> 3P = 240 độ
=> góc P = 80 độ
2)
TTu áp dụng tổng 4 góc trong 1 tứ giác = 360 độ
=> D=360-40-60-120=140 độ
3)
=> góc trong tại đỉnh A = 180-30=150 độ
Góc trong tại đỉnh B = 180 - 70 = 110 độ
Góc trong tại đỉnh C= 180 - 100=80 độ
=> Góc trong D = 360-150-110-80=20 độ
4)
Do góc A=100 độ; góc B=120 độ
=> góc C + góc D = 360-100-120=140 độ
Mà góc C + góc D =20 độ
=> 2.góc C=160 độ
=> Góc C=80 độ
=> Góc D=80-20=60 độ.
Đây là 1 tính chất rất quan trọng.
Ta cần CM: \(\frac{c}{d}>\frac{a+c}{b+d}\)
<=> \(\frac{c}{d}-\frac{a+c}{b+d}>0\)
<=> \(\frac{bc+cd-ad-cd}{d\left(b+d\right)}>0\)
<=> \(\frac{bc-ad}{d\left(b+d\right)}>0\)(*)
Đoán đề bài thiếu, PHẢI LÀ: Cho a, b, c, d > 0 và \(\frac{a}{b}< \frac{c}{d}\)
THÌ NGAY LÚC ĐÓ BĐT (*) SẼ LUÔN ĐÚNG
=> ĐPCM
Có: \(30k^2+73k+93=\frac{1}{3}\left(90k^2+219k+279\right)\)
\(=\frac{1}{3}\left(\left(30k+3,65\right)^2+265,6775\right)\)
Do: \(\left(30k+3,65\right)^2\ge0\forall k\)
=> \(\left(30k+3,65\right)^2+265,6775\ge265,6775>0\forall k\)
Vậy \(30k^2+73k+93>0\forall k\)
TA CÓ ĐPCM
30k2 + 73k + 93
= 30( k2 + 73/30k + 5329/3600 ) + 5831/120
= 30( k + 73/60 )2 + 5831/120 \(\ge\)5831/120 > 0 với mọi k ( đpcm )