tứ giác abcd có góc B= 105 độ, D= 75 độ, AB= BC=CD. Chứng minh -AC là phân giác
-C/m ABCD là hình thang cân (gợi ý CH và CK lần lượt vuông góc với AB và AD)
Các bạn gửi dùm mình cả hình vẽ nhé, vẽ từ chiều mà mãi ko đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
<=> \(x\left(0,2-1,2\right)+3,7=-6,3\)
<=> \(-x=-10\)
<=> \(x=10\)
b)
<=> \(x\left(x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d)
<=> \(2\sqrt{x+1}=8\)
<=> \(\sqrt{x+1}=4\)
<=> \(x=15\)
e)
<=> \(\orbr{\begin{cases}1-x=\sqrt{2}-0,\left(1\right)\\1-x=0,\left(1\right)-\sqrt{2}\end{cases}}\)
<=> \(\orbr{\begin{cases}1+0,\left(1\right)-\sqrt{2}=x\\x=1+\sqrt{2}-0,\left(1\right)\end{cases}}\)
a) 0,2x + ( -1, 2 )x + 3, 7 = -6, 3
<=> x( 0,2 - 1, 2 ) + 3, 7 = -6, 3
<=> -x = -10
<=> x = 10
b) x2 = x
<=> x2 - x = 0
<=> x( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
c) 0,(12) : 1,(6) = x : 0,(4)
<=> 4/33 : 5/3 = x : 4/9
<=> 4/55 = x : 4/9
<=> x = 16/495
d) \(2\sqrt{x+1}-3=5\)
\(\Leftrightarrow2\sqrt{x+1}=8\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\)
e) \(\left|1-x\right|=\sqrt{2}-0,\left(1\right)\)
\(\Leftrightarrow\left|1-x\right|=\sqrt{2}-\frac{1}{9}\)
\(\Leftrightarrow\left|1-x\right|=\frac{-1+9\sqrt{2}}{9}\)
\(\Leftrightarrow\orbr{\begin{cases}1-x=\frac{-1+9\sqrt{2}}{9}\\1-x=\frac{1-9\sqrt{2}}{9}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{10-9\sqrt{2}}{9}\\x=\frac{8+9\sqrt{2}}{9}\end{cases}}\)
Ta có :\(\frac{6^8.2^4-4^5.18^4}{27^3.8^4-3^9.2^{13}}=\frac{\left(2.3\right)^8.2^4-\left(2^2\right)^5.\left(3^2.2\right)^4}{\left(3^3\right)^3.\left(2^3\right)^4-3^9.2^{13}}=\frac{2^{12}.3^8-2^{14}.3^8}{3^9.2^{12}-3^9.2^{13}}=\frac{3^8.2^{12}.\left(2^2-1\right)}{3^9.2^{12}.\left(1-2\right)}\)
\(=\frac{3^9.2^{12}}{-3^9.2^{12}}=-1\)
\(\frac{6^8\cdot2^2-4^5\cdot18^4}{27^3\cdot8^4-3^9\cdot2^{13}}\)
\(=\frac{\left(2.3\right)^8.2^4-\left(2^2\right)^5.\left(3^2.2\right)^4}{\left(3^3\right)^3.\left(2^3\right)^4-3^9.2^{13}}\)
\(=\frac{2^{12}.3^8-2^{14}.3^8}{3^9.2^{12}-3^9.2^{14}}\)
\(=\frac{3^8.2^{12}.\left(2^2-1\right)}{3^9.2^{12}.\left(1-2\right)}\)
\(=\frac{3^9.2^{12}}{-3^9.2^{12}}=-1\)
Ta có : x2y + y - 3x + x2 + x2y + 2y + 5x
= (x2y + x2y) + (y + 2y) + (5x - 3x) + x2
= 2x2y + 3y + 2x + x2
Ta có :
x2y + y - 3x + x2 + x2y + 2y + 5x
= ( x2y + x2y ) + ( y + 2y ) + ( 5x - 3x ) + x2
= 2x2y + 3y + 2x + x2
ĐK : \(\left(x;y\ne0\right)\)
P = axy3 - 3x2y + 2y2 - 3xy3 + 1
= (axy3 - 3xy3) - 3x2y + 2y2 + 1
= xy3(a - 3) - 3x2y + 2y2 + 1
Vì -3x2y có bậc 3 ; 2y2 có bậc 2 ; 1 có bậc 0 <=>
=> xy3(a - 3) có bậc 4 khi a \(\ne\) 3
mà a là số nguyên tố nhỏ hơn 5
=> \(a\in\left\{2;3\right\}\)
mà a \(\ne\) 3 => a = 2
Vậy a = 2
Bài làm:
Ta có: \(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+...+\frac{1}{47.49.51}\)
\(A=\frac{1}{4}\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{47.49.51}\right)\)
\(A=\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}\right)\)
\(A=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{49.51}\right)\)
\(A=\frac{1}{12}-\frac{1}{4.49.51}< \frac{1}{12}\)
Vậy \(A< \frac{1}{12}\)
Từ đề bài suy ra\(4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{47.49.51}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}=\frac{1}{3}-\frac{1}{49.51}< \frac{1}{3}\)
\(\Rightarrow A< \frac{1}{12}\left(đpcm\right)\)
\(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)=> \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}\)=> \(\frac{x}{\frac{3}{2}}=\frac{y}{2}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{3}{2}}=\frac{y}{2}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+2+\frac{5}{4}}=\frac{49}{\frac{19}{4}}=\frac{196}{19}\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=\frac{196}{19}\\\frac{y}{2}=\frac{196}{19}\\\frac{z}{\frac{5}{4}}=\frac{196}{19}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{294}{19}\\y=\frac{392}{19}\\z=\frac{245}{19}\end{cases}}\)
Bài làm:
Ta có: \(\frac{2x}{3}=\frac{2y}{4}=\frac{4y}{5}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{5}=\frac{x+y+z}{6+8+5}=\frac{49}{19}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{49}{19}.6=\frac{294}{19}\\y=\frac{49}{19}.8=\frac{392}{19}\\z=\frac{49}{19}.5=\frac{245}{19}\end{cases}}\)
a) Xét \(\Delta\)ABM và \(\Delta\) ANM có :
\(\hept{\begin{cases}AB=AN\\\widehat{A_1}=\widehat{A_2}\\AM\text{ chung}\end{cases}\Rightarrow\Delta ABM=\Delta ANM}\)(c.g.c)
=> MB = MN (cạnh tương ứng)
=> BM = MN (cạnh tương ứng)
=> \(\widehat{ABM}=\widehat{ANM}\text{ mà }\widehat{ABM}+\widehat{MBK}=\widehat{ANM}+\widehat{MNC}\left(=180^{\text{o}}\right)\Rightarrow\widehat{MBK}=\widehat{MNC}\)
b) Xét \(\Delta BMK\text{ và }\Delta BMC\text{ có }\)
\(\hept{\begin{cases}BM=MN\left(cmt\right)\\\widehat{M1}=\widehat{M2}\left(\text{đối đỉnh}\right)\\\widehat{MBK}=\widehat{MNC}\left(cmt\right)\end{cases}}\Rightarrow\Delta BMK=\Delta NMC\left(g.c.g\right)\)
=> BK = NC( cạnh tương ứng)
Vì AB = AN
=> \(\Delta\)ABN cân tại A => \(\widehat{B_2}=\widehat{N_2}\)
Lại có \(\widehat{A}+\widehat{B1}+\widehat{N2}=180^{\text{o}}\Rightarrow\widehat{B1}=\frac{180^{\text{o}}-\widehat{A}}{2}\) (1)
vÌ AB = AN => AB + AK = AN + NC => AK = AC => \(\Delta AKC\)cân tại A
=> \(\widehat{K}=\widehat{C}\text{ mà }\widehat{A}+\widehat{K}+\widehat{C}=180^{\text{o}}\Rightarrow\widehat{K}=\frac{180^{\text{o}}-\widehat{A}}{2}\)(2)
Từ (1) ; (2) => \(\widehat{B1}=\widehat{K}\)=> BN//BC (2 góc đồng vị bằng nhau)
c) Kéo dài AM sao cho \(AM\Omega BC=\left\{H\right\}\)
Xét \(\Delta AKH\text{ và }\Delta ACH\text{ có }\)
\(\hept{\begin{cases}AK=AC\\\widehat{A1}=\widehat{A2}\\AH\text{ chung}\end{cases}}\Rightarrow\Delta AKH=\Delta ACH\left(C.C.C\right)\)
=> \(\widehat{H1}=\widehat{H2}\text{ mà }\widehat{H1}+\widehat{H2}=180^{\text{o}}\Rightarrow\widehat{H1}=\widehat{H2}=90^{\text{o}}\Rightarrow AH\perp KC\)
\(\Delta\)
a) Xét \(\Delta ABM\)và \(\Delta ANM\)có :
\(AB=AN\left(gt\right)\)
\(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)
\(AM\)chung
\(\Rightarrow\Delta ABM=\Delta ANM\left(c.g.c\right)\)
\(\Rightarrow MB=MN\)( 2 cạnh tương ứng )
b) Ta có : \(\Delta ABM=\Delta ANM\left(cmt\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{ANM}\)( 2 góc tương ứng )
mà \(\widehat{ABM}+\widehat{MBK}=180^o\)( kề bù )
và \(\widehat{ANM}+\widehat{MNC}=180^o\)( kề bù )
\(\Rightarrow\widehat{MBK}=\widehat{MNC}\)
Xét \(\Delta MBK\)và \(\Delta MNC\)có :
\(\widehat{MBK}=\widehat{MNC}\left(cmt\right)\)
\(MB=MN\left(cmt\right)\)
\(\widehat{BMK}=\widehat{CMK}\)( đối đỉnh )
\(\Rightarrow\Delta MBK=\Delta MNC\left(g.c.g\right)\)
c) Gọi giao của AM và KC tại I
Ta có : \(\Delta ABM=\Delta ANM\left(cmt\right)\)
\(\Rightarrow AB=AN\)( 2 cạnh tương ứng ) (1)
Ta lại có : \(\Delta MBK=\Delta MNC\left(cmt\right)\)
\(\Rightarrow BK=NC\)( 2 cạnh tương ứng ) (2)
Từ \(\left(1\right);\left(2\right)\Rightarrow AB+BK=AN+NC\)
\(\Rightarrow AK=AC\)
Xét \(\Delta KAI\)và \(\Delta CAI\)có :
\(AK=AC\left(cmt\right)\)
\(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)
AI chung
\(\Rightarrow\Delta KAI=\Delta CAI\left(c.g.c\right)\)
\(\Rightarrow\widehat{AIK}=\widehat{AIC}\)( 2 góc tương ứng )
mà \(\widehat{AIK}+\widehat{AIC}=180^o\)( kề bù )
\(\Rightarrow\widehat{AIK}=90^o\)
\(\Rightarrow AI\perp KC\)hay \(AM\perp KC\)
Ta có : AB = AN ( cmt )
\(\Rightarrow\Delta BAN\)cân tại A
\(\Rightarrow\widehat{ABN}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
Ta lại có : AK = AC ( cmt )
\(\Rightarrow\Delta KAC\)cân tại A
\(\Rightarrow\widehat{AKC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{ABN}=\widehat{AKC}\)
mà 2 góc nằm ở vị trí so le trong
\(\Rightarrow BN//KC\)
Bài 4 :
a) Ta có : \(\frac{x}{y}=\frac{-6}{9}\)=> \(\frac{x}{-6}=\frac{y}{9}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{-6}=\frac{y}{9}=\frac{x-y}{-6-9}=\frac{30}{-15}=-2\)
=> x = 12,y = -18
b) Ta có : \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}\)
=> \(\frac{x}{5}=\frac{2y}{8}=\frac{z}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{2y}{8}=\frac{z}{7}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)
=> x = 10,y = 8 , z = 14
c) Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{28}\)
\(\frac{z}{5}=\frac{y}{7}\Rightarrow\frac{z}{20}=\frac{y}{28}\)
=> \(\frac{x}{15}=\frac{y}{28}=\frac{z}{20}\)
=> \(\frac{2x}{30}=\frac{3y}{84}=\frac{z}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{84}=\frac{z}{20}=\frac{2x+3y-z}{30+84-20}=\frac{106}{94}=\frac{53}{47}\)
Tới đây làm nốt nhé
a, tự làm
b, Theo bài ra ta có : \(7x=9y\Leftrightarrow\frac{x}{9}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{9}=\frac{y}{7}=\frac{10x-8y}{10.9-8.7}=\frac{68}{34}=2\)
\(x=18;y=14\)
c, \(\left(x-\frac{1}{2}\right)^{50}+\left(y+\frac{1}{3}\right)^{40}=0\)
Ta có : \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^{50}\ge0\forall x\\\left(y+\frac{1}{3}\right)^{40}\ge0\forall y\end{cases}}\Leftrightarrow\left(x-\frac{1}{2}\right)^{50}+\left(y+\frac{1}{3}\right)^{40}\ge0\forall x;y\)
Dấu ''='' xảy ra <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{18}=\frac{y}{15}=\frac{x-y}{18-15}=\frac{-30}{3}=-10\)
=> x = -10.18 = -180 ; y = -10.15 = -150
b) Ta có : \(7x=9y\Rightarrow\frac{7x}{63}=\frac{9y}{63}\Rightarrow\frac{x}{9}=\frac{y}{7}\)
=> \(\frac{10x}{90}=\frac{8y}{56}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{10x}{90}=\frac{8y}{56}=\frac{10x-8y}{90-56}=\frac{68}{34}=2\)
=> x = 18,y = 14
c) Vì \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^{50}\ge0\forall x\\\left(y+\frac{1}{3}\right)^{40}\ge0\forall y\end{cases}}\)
=> \(\left(x-\frac{1}{2}\right)^{50}+\left(y+\frac{1}{3}\right)^{40}\ge0\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+\frac{1}{3}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)
Vậy:....
1+1x3=
bằng 4