Tìm mẫu thức chung rồi quy đồng mẫu các phân thức sau :
a) \(\frac{2x-3y}{2xy};\frac{x+2y}{x}\)
b) \(\frac{2}{x^2-4x};\frac{x}{x^2-16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^2-\left(x-2\right)^2-\left(x-3\right)^2+\left(x-4\right)^2\)
\(=\left(x-1-x+2\right)\left(x-1+x-1\right)-\left(x-3+x-4\right)\left(x-3-x+4\right)\)
\(=2x-2-2x+7\)
\(=5\)
\(\hept{\begin{cases}MN\perp AB\\MF\perp AC\\\widehat{BAC}=90^0\end{cases}\Rightarrow}\)tứ giác AEMO là hình chữ nhật
N là điểm đối xúng với M qua AB \(\hept{\begin{cases}NE=EM\\AE=EB\\MN\perp AB\end{cases}\Rightarrow}\)AMBN là hình thoi
Hình vẽ (Nhập link rồi enter ra nhé, xin lỗi vì sự bất tiện): https://i.imgur.com/zZhSvQH.png
a) Xét tứ giác AEMO có: \(\widehat{BAC}=90^o;\widehat{AEM}=90^o;\widehat{AOM}=90^o.\)=> AEMO là hình chữ nhật
b) ta có: AEMO là hình chữ nhật (cmt) => ME//AO => ME//AC
do BM = CM (M là trung điểm của BC); ME//AC (cmt) => EA = EB
Xét tứ giác AMBN có:
EM = EN (N đối xứng với M qua AB)
\(AB\perp MN\)( nt )
EA = EB (cmt)
=> AMBN là hình thoi (đpcm)
Học tốt nhé! ^3^
\(a,\)\(đkxđ\)của \(A\)\(:\)\(\hept{\begin{cases}x^2-25\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)\left(x+5\right)\ne0\\x\left(x+5\right)\ne0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x\ne\pm5\\x\ne0\end{cases}}\)
\(đkxđ\)của \(B\)\(:\)\(\hept{\begin{cases}x^2+5x\ne0\\5-x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x+5\right)\ne0\\5-x\ne0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x\ne\pm5\\x\ne0\end{cases}}\)
\(b,\)\(A=\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}=\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\)
\(=\frac{x^2-\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}=\frac{x^2-x^2+10x-25}{x\left(x-5\right)\left(x+5\right)}\)\(=\frac{10x-25}{x\left(x+5\right)\left(x-5\right)}\)
\(B=\frac{2x-5}{x^2+5x}+\frac{x+3}{5-x}=\frac{2x-5}{x\left(x+5\right)}-\frac{x+3}{x-5}\)
\(=\frac{\left(2x-5\right)\left(x+5\right)-\left(x-3\right)\left(x^2+5x\right)}{x\left(x-5\right)\left(x+5\right)}\)
\(=\frac{2x^2+5x-25-x^3-2x^2+15x}{x\left(x-5\right)\left(x+5\right)}\)
\(=\frac{-x^3+20x-25}{x\left(x-5\right)\left(x+5\right)}\)
\(\Rightarrow P=A:B=\frac{10x-25}{x\left(x+5\right)\left(x-5\right)}:\frac{x^3+20x-25}{x\left(x+5\right)\left(x-5\right)}\)
\(=\frac{10x-25}{x^3+20x-25}\)
Đề có vấn đề ko vậy babe -.- \(x^3+20x-25\)vẫn phân tích được, nhưng ko rút gọn được -.-
Áp dụng BĐT Bunhiacopski
ta có \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)
mà \(\left(a+c\right)^2+\left(b+d\right)^2=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)
\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)
\(=\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)
Lúc đó \(\left(a+c\right)^2+\left(b+d\right)^2\)\(\le\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)
\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
Ta có\(\frac{n^2}{n+2}=n-2\)\(+\frac{4}{n+2}\)Mà n thuộc Z nên \(\frac{4}{n+2}\)thuộc Z =>n+2 thuộc Ư(4)
Từ đây bạn giải ra n
2. 3^x + 3^x . 3^2 = 99
3^x . ( 2+3^2)=99
3^x . (2+9)=99
3^x . 11=99
3^x=99:11
3^x=9
3^x=3^2
x=2
vậy: x=2
( ^ là mũ nha)
\(2.3^x+3^{x+2}=99\)
\(\Leftrightarrow2.3^x+3^x.3^2=99\)
\(\Leftrightarrow3^x\left(2+9\right)=99\)
\(\Leftrightarrow3^x=9\)
\(\Leftrightarrow x=2\)
a) MTC: 2xy
Quy đồng: \(\frac{2x-3y}{2xy}\) giữ nguyên
\(\frac{x+2y}{x}=\frac{2y\left(x+2y\right)}{2xy}=\frac{2xy+y^2}{2xy}\)
b) \(\frac{2}{x^2-4x}=\frac{2}{x\left(x-4\right)};\frac{x}{x^2-16}=\frac{x}{\left(x-4\right)\left(x+4\right)}\)
MTC: x (x-4)(x+4)
Quy đồng : \(\frac{2}{x\left(x-4\right)}=\frac{2\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)}=\frac{2x+8}{x\left(x-4\right)\left(x+4\right)}\)
\(\frac{x}{\left(x+4\right)\left(x-4\right)}=\frac{x^2}{x\left(x-4\right)\left(x+4\right)}\)
Học tốt nhé ^3^