Ai kb k ah ???
:)))
:3 -- linhcute~~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này tớ nghĩ y = x2 đúng hơn là y = -x2 đấy vì y = x2 sẽ có Amin còn y = -x2 sẽ tìm luôn đc A , xem nhé
Hoành độ giao điểm của (d) và (P) là nghiệm của pt :
\(-x^2=2x-m+4\)
\(\Leftrightarrow x^2+2x-m+4=0\)
Pt có nghiệm khi \(\Delta'\ge0\)
\(\Leftrightarrow1+m-4\ge0\)
\(\Leftrightarrow m\ge3\)
Xét điểm \(A\left(x_1;y_1\right)\in\left(P\right)\Rightarrow y_1=-x_1^2\)
Xét điểm \(B\left(x_2;y_2\right)\in\left(P\right)\Rightarrow y_2=-x_2^2\)
Khi đó \(A=x_1^2-x_1^2+x_2^2-x_2^2=0\)
Vì \(x;y;z\inℕ^∗\) và \(x< y< z\)nên \(\hept{\begin{cases}x\ge1\\y\ge2\\z\ge3\end{cases}}\)
\(\Rightarrow0< \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}< 2\)
\(\Rightarrow0< k< 2\)
Mà k nguyên dương nên k = 1
Với k = 1 thì pt : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
*Với x = 1 thì VT > VP với mọi y ; z nguyên dương
*Với x > 3 thì y > 4 và z > 5
\(\Rightarrow VT\le\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 1\)
=> pt vô nghiệm
Do đó x = 2
\(\Rightarrow\frac{1}{2}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Leftrightarrow\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)
\(\Leftrightarrow\frac{y+z}{yz}=\frac{1}{2}\)
\(\Leftrightarrow2y+2z=yz\)
\(\Leftrightarrow\left(2y-yz\right)+\left(2z-4\right)=-4\)
\(\Leftrightarrow y\left(2-z\right)+2\left(z-2\right)=-4\)
\(\Leftrightarrow\left(y-2\right)\left(2-z\right)=-4\)
\(\Leftrightarrow\left(y-2\right)\left(z-2\right)=4\)
Từ pt \(\Rightarrow y\ne2\)
=> y > 2
Vì \(\hept{\begin{cases}y>2\\z\ge3\end{cases}\Rightarrow}\hept{\begin{cases}y-2>0\\z-2>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y-2=1\\z-2=4\end{cases}\left(h\right)\hept{\begin{cases}y-2=2\\z-2=2\end{cases}\left(h\right)\hept{\begin{cases}y-2=4\\z-2=1\end{cases}}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3\\z=6\end{cases}}\)(Do y < z )
Vậy \(\hept{\begin{cases}x=2\\y=3\\z=6\end{cases}}\)
Một đám bèo trôi theo dòng sông từ A đến B hết bao lâu là :
5+7=12 ( giờ)
Đáp số : 12 giờ
Từ \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=3\Rightarrow a+b+c=3abc\)
Áp dụng bất đẳng thức Cô-si ta được
\(P=\frac{ab^2}{a+b}+\frac{bc^2}{b+c}+\frac{ca^2}{c+a}\ge3\sqrt[3]{\frac{a^3b^3c^3}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
\(=\frac{3abc}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
\(\ge\frac{a+b+c}{\frac{a+b+b+c+c+a}{3}}\)
\(=\frac{a+b+c}{\frac{2\left(a+b+c\right)}{3}}\)
\(=\frac{3}{2}\)
Dấu "=" xảy ra < = > a = b = c = 1
a) Gọi BH cắt (O) tại S khác B. Qua tính chất quen thuộc của trực tâm ta thấy H,S đối xứng nhau qua AC.
Do đó ^ASE = ^AHE = 900 (Vì HE // BC, AH vuông góc BC) hay SE vuông góc với AS (1)
Ta có AD là đường kính của (O) => ^ASD chắn nửa (O) => SD vuông góc với AS (2)
Từ (1) và (2) suy ra SE trùng SD hay DE cắt (O) tại S. Như vậy BH,DE cắt nhau trên (O) (đpcm).
b) Tương tự câu a, CH,DF cũng cắt nhau tại 1 điểm trên (O), gọi nó là T
Dễ thấy AH = AS = AT (Tính chất đối xứng). Mà AH,AS,AT lần lượt là khoảng cách từ A đến EF,DE,DF
Nên A chính là tâm bàng tiếp góc D của \(\Delta\)DEF (A nằm ngoài \(\Delta\)DEF) (đpcm).
c) Gọi IH cắt CF tại G. Ta sẽ chỉ ra rằng B,G,E thẳng hàng. Thật vậy:
Ta có FA,FI là phân giác trong và ngoài của ^DFE => FI vuông góc AB => FI // CH
Từ đó \(\Delta\)IGF ~ \(\Delta\)HGC (g.g) => \(\frac{GI}{GH}=\frac{IF}{HC}\)(3)
Mặt khác ^IFE = ^FAH (Cùng phụ ^AFH) = ^HCB. Tương tự ^IEF = ^HBC
Suy ra \(\Delta\)EIF ~ \(\Delta\)BHC (g.g) => \(\frac{IF}{HC}=\frac{IE}{HB}\)(4)
Từ (3) và (4), kết hợp với ^GIE = ^GHB suy ra \(\Delta\)GEI ~ \(\Delta\)GBH (c.g.c)
=> ^IGE = ^HGB. Vì I,G,H thẳng hàng nên kéo theo B,G,E thẳng hàng
Vậy thì BE,CF,IH cắt nhau tại G (đpcm).
Bạn ơi, chứng minh cho mình câu b: AH=AS=AT với được không ạ
Kb nka
mk
#HDLL
e nè!!