K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2023

Phương trình bậc hai có dạng: a\(x^2\) + b\(x\) + c 

Bước 1: Đưa nó về bình phương của một tổng hoặc một hiệu cộng với một số nào đó. nếu a > 0 thì em sẽ tìm giá trị nhỏ nhất;  nếu a < 0 thì em sẽ tìm giá trị lớn nhất 

Bước 2: lập luận chỉ ra giá trị lớn nhất hoặc nhỏ nhất

Bước 3: kết luận

                  Giải:

A = 3\(x^2\) - 5\(x\) + 3  Vì a = 3 > 0 vậy biểu thức A chỉ tồn tại giá trị nhỏ nhất

A = 3\(x^2\) - 5\(x\) + 3 

A = 3.(\(x\)2 - 2.\(x\).\(\dfrac{5}{6}\) + \(\dfrac{25}{36}\))  + \(\dfrac{11}{12}\) 

A = 3.(\(x\) - \(\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\) 

Vì (\(x-\dfrac{5}{6}\))2 ≥ 0  ⇒ 3.(\(x\) - \(\dfrac{5}{6}\))2 ≥ 0 ⇒ 3.(\(x-\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\) ≥ \(\dfrac{11}{12}\)

Amin = \(\dfrac{11}{12}\) ⇔ \(x\) = \(\dfrac{5}{6}\)

 

14 tháng 8 2023

A B C D M K H

a/

Xét tg vuông MCA và tg vuông MCK có

CM chung 

CA=CK (gt)

=> tg MCA = tg MCK (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

b/

Xét tg ACK có

\(CM\perp AK\) (gt)

\(AD\perp BC\) (gt)

=> H là trực tâm tg ACK => \(KH\perp AC\)

Mà \(AB\perp AC\)

=> KH//AB

c/

Xét tg vuông AMH và tg vuông KMH có

tg MCA = tg MCK (cmt) => MA=MK

MH chung

=> tg vuông AMH = tg vuông KMH  (Hai tg vuông có hai cạnh góc vuông bằng nhau)

=> HA=HK (1)

Xét tg vuông KDH có

HD<HK (trong tg vuông cạnh huyền là cạnh có độ dài lớn nhất) (2)

Từ (1) và (2) => HD<HA

 

 

 

14 tháng 8 2023

ai trả lời nhanh cho mình vs ạ đang cần gấp

 

14 tháng 8 2023

Tham khảo nha

Vì AD//BC

=> góc DAC = góc BCA. ( so le trong)

Mà góc DAC = góc BAC ( AC là p/giác góc A)

=>góc BAC= goc BCA

=> tam giác BAC cân tại B

=>AB=BC
Vậy _____________