\(\sqrt{17-3\sqrt{32}-\sqrt{17+3\sqrt{32}}}\)
\(\sqrt{36-12\sqrt{5}-\sqrt{36+12\sqrt{5}}}\)
\(\sqrt{36-12\sqrt{5}-\sqrt{36+12\sqrt{5}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow x^2-\sqrt{2}\left(x^2+2x-1\right)=0\)
Đề có nhầm không????
Học tốt!!!!!!!!!!!!!!
\(B=\sqrt{x-4\sqrt{x}+4}+\sqrt{x-6\sqrt{x}+9}\)
\(=\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}\)
\(=\left|\sqrt{x}-2\right|+\left|3-\sqrt{x}\right|\ge\left|\sqrt{x}-2+3-\sqrt{x}\right|=1\)
Dấu "=" <=> 4 < x < 9
a, \(A=x^2-x\sqrt{y}-2x\sqrt{y}+2y\)
\(=x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)
\(=\left(x-2\sqrt{y}\right)\left(x-\sqrt{y}\right)\)
\(a,\)\(A=x^2-3x\sqrt{y}+2y\)
\(=x^2-2x\sqrt{y}-x\sqrt{y}+2y\)
\(=x\left(x-2\sqrt{y}\right)-\sqrt{y}\left(x-2\sqrt{y}\right)\)
\(=\left(x-\sqrt{y}\right)\left(x-2\sqrt{y}\right)\)
\(b,\)Ta có : \(x=\frac{1}{\sqrt{5}-2}=\frac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=\frac{\sqrt{5}+2}{5-4}=\sqrt{5}+2\)
\(y=\frac{1}{9+4\sqrt{5}}=\frac{9-4\sqrt{5}}{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}=\frac{9-4\sqrt{5}}{81-80}=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)
\(\Rightarrow A=\left[\sqrt{5}+2-\sqrt{\left(\sqrt{5}-2\right)^2}\right]\left[\sqrt{5}+2-2\sqrt{\left(\sqrt{5}-2\right)^2}\right]\)
\(=\left(\sqrt{5}+2-\sqrt{5}-2\right)\left(\sqrt{5}+2-2\sqrt{5}+4\right)\)
\(=4\left(6-\sqrt{5}\right)\)
\(=24-4\sqrt{5}\)
https://h7.net/hoi-dap/toan-10/tim-m-de-pt-x-4-1-2m-x-2-m-2-1-0-vo-nghiem-faq37232.html
Tham khảo tại link này(mik gửi cho)
Học tốt!!!!!!!!!!!!!
c) x - 6\(\sqrt{x}\)+ 9 = \(\left(\sqrt{x}\right)^2\)- 2.\(\sqrt{x}\).3 + 9 = \(\left(\sqrt{x}-3\right)^2\)
d) Tương tự.
a,b) Không hiểu
\(a,x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(b,x-5=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)
\(c,x-6\sqrt{x}+9=\left(\sqrt{x}-3\right)^2\)
\(d,x-4\sqrt{x}+4=\left(\sqrt{x}-2\right)^2\)
Vì là số hữu tỉ nên \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}=\frac{a}{b}\left(a;b\inℕ^∗\right)\)
\(\Leftrightarrow bx+by\sqrt{2013}=ay+az\sqrt{2013}\)
\(\Leftrightarrow az\sqrt{2013}-by\sqrt{2013}=bx-ay\)
\(\Leftrightarrow\sqrt{2013}\left(az-by\right)=bx-ay\)
Vì VP là số hữu tỉ nên VT là số hữu tỉ
Mà \(\sqrt{2013}\)là số vô tỉ
Nên \(bx-ay=az-by=0\)
\(\Rightarrow\hept{\begin{cases}bx=ay\\az=by\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{y}=\frac{a}{b}\\\frac{y}{z}=\frac{a}{b}\end{cases}}\)
\(\Rightarrow\frac{x}{y}=\frac{y}{z}\)
\(\Rightarrow xz=y^2\)
Ta có \(x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z\right)^2-y^2=\left(x-y+z\right)\left(x+y+z\right)\)
Mà \(x^2+y^2+z^2\)là số nguyên tố nên
\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}}\)(Do \(x-y+z< x+y+z\))
Vì x ; y ; z nguyên dương nên \(x;y;z\ge1\Rightarrow\hept{\begin{cases}x^2\ge x\\y^2\ge y\\z^2\ge z\end{cases}}\)
\(\Rightarrow x^2+y^2+z^2\ge x+y+z\)
Dấu "=" xảy ra <=> x = y = z = 1 (thỏa mãn)
Theo đề ra ta có: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}=\frac{m}{n}\left(m,n\in Z;\left(m,n\right)=1\right).\)
\(\Rightarrow nx+ny\sqrt{2013}=my+mz\sqrt{2013}\Leftrightarrow nx-my=\sqrt{2013}\left(mz-ny\right).\)
\(\Rightarrow\hept{\begin{cases}nx-my=0\\mz-ny=0\end{cases}}\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2\)(vì x,y,n,m đều là các số nguyên )
Khi đó: \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)
\(=\left(x-y+z\right)\left(x+y+z\right)\)
Dễ thấy \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên:
\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)
Thử lại ta thấy x=y=z=1 thỏa mãn .