Cho tam giác ABC có \(\widehat{A}>\widehat{B}>\widehat{C}\); O là một điểm bất kì nằm trong tam giác. Vẽ AO,BO,CO lần lượt cắt P,Q,R. CMR: OP+OQ+OR<BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) công thức . \(\frac{đáy.chiềucao}{2}\)
b) Áp dụng định lý pitago ta có
\(BC^2=AB^2+AC^2\)
=> AC^2=\(BC^2-AB^2=^{10^2}-6^2=64\)
=>\(AC=8\)
A)Xét tam giác ABC vuông tại A(gt),có:
SABC=(AB.AC)/2
B)Xét tam giác ABC vuông tại A(gt),có:
AB^2+AC^2=BC^2(ĐL Pytago)
Thay số:36+AC^×=100
<=>AC=căn64=8cm
Ta có:SABC=(AB.AC)/2
Thay số:SABC=24cm^2
Mà SABC=(AH.BC)/2
=>(AH.BC)/2=24
Thay số:AH=24.2:10=4,8cm
SABC=24CM^2(cmt)
\(A=2x^2+2xy+y^2-2x+2y+2\)
\(\Rightarrow2A=4x^2+4xy+2y^2-4x+4y+4\)
\(=\left(4x^2+4xy+y^2\right)-2\left(2x+y\right).1+1+y^2+6y+9-6\)
\(=\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(y+3\right)^2-6\)
\(=\left(2x+y-1\right)^2+\left(y+3\right)^2-6\)
vì \(\left(2x+y-1\right)^2\ge0\forall x,y;\left(y+3\right)^2\ge0\forall y\)nên
\(2A=\left(2x+y-1\right)+\left(y+3\right)-6\ge-6\forall x,y\)
hay \(2A\ge-6\Rightarrow A\ge-3\Rightarrow minA=-3\Leftrightarrow\hept{\begin{cases}2x+y-1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
\(\frac{x-2010-2011}{2009}+\frac{x-2009-2011}{2010}+\frac{x-2009-2010}{2011}=3\)
\(\Leftrightarrow\left(\frac{x-2010-2011}{2009}-1\right)+\left(\frac{x-2009-2011}{2010}-1\right)+\left(\frac{x-2009-2010}{2011}-1\right)=0\)
\(\Leftrightarrow\frac{x-6030}{2009}+\frac{x-6030}{2010}+\frac{x-6030}{2011}=0\)
\(\Leftrightarrow\left(x-6030\right)\left(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}\right)\)
\(\Leftrightarrow x-6030=0\)(vì \(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}>0\))
\(\Leftrightarrow x=6030\)
Vậy ................
\(B=-x^2-y^2+xy+2x+2y\)
\(\Rightarrow-2B=2x^2+2y^2-2xy-2x-4y\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)-8\)
\(=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2-8\)
vì \(\left(x-y\right)^2\ge0\forall x,y;\left(x-2\right)^2\ge0\forall x;\left(y-2\right)\ge0\forall y\)nên
\(-2B=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2-8\ge8\)
hay \(-2B\ge-8\Rightarrow B\le4\)
\(\Rightarrow maxB=4\Leftrightarrow\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\x=2\\y=2\end{cases}}}\)
1/
\(\frac{x-1}{13}-\frac{2x-13}{15}=\frac{3x-15}{27}-\frac{4x-27}{29}\)
\(\Leftrightarrow\left(\frac{x-1}{13}-1\right)-\left(\frac{2x-13}{15}-1\right)=\left(\frac{3x-15}{27}-1\right)-\left(\frac{4x-27}{29}-1\right)\)
\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}=\frac{3\left(x-14\right)}{27}-\frac{4\left(x-14\right)}{29}\)
\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}-\frac{3\left(x-14\right)}{27}+\frac{4\left(x-14\right)}{29}=0\)
\(\Leftrightarrow\left(x-14\right)\left(\frac{1}{13}-\frac{2}{15}-\frac{3}{27}+\frac{4}{29}\right)=0\)
\(\Leftrightarrow x-14=0\)(vì 1/13 -2/15 -3/27 +4/29 khác 0)
\(\Leftrightarrow x=14\)
vậy...................
2/
\(a,ĐKXĐ:x\ne\pm2\)
\(b,A=\frac{4}{3x-6}-\frac{x}{x^2-4}\)
\(=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4\left(x+2\right)-3x}{3\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
c,với \(x\ne\pm2\)ta có \(A=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
với x=1 thay vào A ta có \(A=\frac{1+8}{3\left(1-2\right)\left(1+2\right)}=\frac{9}{-9}=-1\)
\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)=-3x\left(x+2\right)\)
\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)-\left(x^3+27\right)=-3x^2-6x\)
\(\Leftrightarrow-3x^2+3x-28=-3x^2-6x\)
\(\Leftrightarrow3x-28=-6x\Leftrightarrow9x=28\)
\(\Leftrightarrow x=\frac{28}{9}\)
Vậy tập nghiệm S\(=\left\{\frac{28}{9}\right\}\)
Đáp án:
(x−1)3−(x+3)(x2−3x+9)=−3x(x+2)
⇒x3−3x2+3x−1−(x3+33)=−3x2−6x
⇒x3−3x2+3x−1−x3−27+3x2+6x=0
⇒9x−28=0
⇒x=\(\frac{28}{9}\)
Vậyx=\(\frac{28}{9}\)
#Châu's ngốc
\(A=-2x^2+5x-8\)
\(=-2\left(x^2-\frac{5}{2}x\right)-8\)
\(=-2\left(x^2-2.x.\frac{5}{4}+\frac{25}{16}-\frac{25}{16}\right)-8\)
\(=-2\left(x-\frac{5}{4}\right)^2-\frac{39}{8}\)
Vì \(-2\left(x-\frac{5}{4}\right)^2\le0;\forall x\)
\(\Rightarrow-2\left(x-\frac{5}{4}\right)^2-\frac{39}{8}\le-\frac{39}{8};\forall x\)
Dấu "="xảy ra \(\Leftrightarrow\left(x-\frac{5}{4}\right)^2=0\)
\(\Leftrightarrow x=\frac{5}{4}\)
Vậy MAX \(A=\frac{-39}{8}\)\(\Leftrightarrow x=\frac{5}{4}\)