1) giả phương trình \(x^2+\frac{1}{x^2}+16y^2+\frac{1}{y^2}=10\)
2) Tìm GTLN \(M=\frac{b}{7\cdot\left(b+b\right)}\left(a;b\inℕ\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+m}{n+p}+\frac{x+n}{p+m}+\frac{x+p}{m+n}+3=0\)
\(\Leftrightarrow\frac{x+m}{n+p}+1+\frac{x+n}{p+m}+1+\frac{x+p}{m+n}+1=0\)
\(\Leftrightarrow\frac{x+m+n+p}{n+p}+\frac{x+m+n+p}{p+m}+\frac{x+m+n+p}{m+n}=0\)
\(\Leftrightarrow\left(x+m+n+p\right)\left(\frac{1}{n+p}+\frac{1}{p+m}+\frac{1}{m+n}\right)=0\)
Dễ thấy \(\left(\frac{1}{n+p}+\frac{1}{p+m}+\frac{1}{m+n}\right)\ne0\)
Nên x + m + n + p = 0\(\Rightarrow x=-\left(m+n+p\right)\)
\(\frac{x-12}{21}+\frac{x-10}{23}=\frac{x-8}{25}+\frac{x-6}{27}\)
\(\Leftrightarrow\frac{x-12-21}{21}+\frac{x-10-23}{23}-\frac{x-8-25}{25}-\frac{x-6-27}{27}=0\)
\(\Leftrightarrow\frac{x-33}{21}+\frac{x-33}{23}-\frac{x-33}{25}-\frac{x-33}{27}=0\)
\(\Leftrightarrow\left(x-33\right)\left(\frac{1}{21}+\frac{1}{23}-\frac{1}{25}-\frac{1}{27}\right)=0\)
Vif \(\left(\frac{1}{21}+\frac{1}{23}-\frac{1}{25}-\frac{1}{27}\right)\ne0\)
\(\Rightarrow x-33=0\)
\(\Rightarrow x=33\)
\(\frac{x-12}{21}+\frac{x-10}{23}=\frac{x-8}{25}+\frac{x-6}{27}\)
\(\Leftrightarrow\frac{x-12}{21}+1+\frac{x-10}{23}+1=\frac{x-8}{25}+1+\frac{x-6}{27}+1\)
\(\Leftrightarrow\frac{x-33}{21}+\frac{x-33}{23}=\frac{x-33}{25}+\frac{x-33}{27}\)
\(\Leftrightarrow\frac{x-33}{21}+\frac{x-33}{23}-\frac{x-33}{25}-\frac{x-33}{27}=0\)
\(\Leftrightarrow\left(x-33\right)\left(\frac{1}{21}+\frac{1}{23}-\frac{1}{25}-\frac{1}{27}\right)=0\)
Mà \(\frac{1}{21}+\frac{1}{23}-\frac{1}{25}-\frac{1}{27}\ne0\)
\(\Rightarrow x-33=0\)
\(\Leftrightarrow x=33\)
\(M=\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)+x^2\)
\(=x^2-bx-ax+ab+x^2-cx-bx+bc+x^2-ax-cx+ca+x^2\)
\(=4x^2-2ax-2bc-2cx+ab+bc+ca\)
\(=4x^2-2\left(a+b+c\right)x+ab+bc+ca\)
với \(x=\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c\Rightarrow2x=a+b+c\)
\(\Rightarrow M=\left(a+b+c\right)^2-\left(a+b+c\right)^2+ab+bc+ca\)
\(=ab+bc+ca\)
1) \(x^2+\frac{1}{x^2}+16y^2+\frac{1}{y^2}=10\)
\(\Leftrightarrow\left(x^2+2\cdot x\cdot\frac{1}{x}+\frac{1}{x^2}\right)+\left(16y^2+2\cdot4y\cdot\frac{1}{y}+\frac{1}{y^2}\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(4y+\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{x}=0\\4y+\frac{1}{y}=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\4y^2+1=0\end{cases}}\) ( vô lí )
Phương trình vô nghiệm
Câu 1 giống bạn kia:
Câu 2:Sửa đề nhé, tại thấy a,b thuộc N
\(M=\frac{b}{7\left(a+b\right)}\) ( đkxđ:\(a\ne-b\))
\(\Rightarrow\frac{1}{M}=\frac{7a}{b}+7\ge7\)\(\)(Vì \(a,b\in N\Rightarrow a,b\ge0\))
\(\Rightarrow M\le7\)
\(\Rightarrow M\)đạt GTLN là 7 khi \(\text{a=0}\) và \(b\ne0\)