K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

A B C D E G F H

Xét tg ABC có

EF//AC  (gt) (1)

EA=EB (gt) 

=> FB=FC (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

EA=EB (gt); FB=FC (cmt) => EF là đường trung bình của tg ABC

\(\Rightarrow EF=\dfrac{1}{2}AC\) (2)

Xét tg BCD chứng minh tương tự ta cũng có GC=GD

Xét tg ADC có

GF//AC (gt) (3)

GC=GD (cmt)

=> HA=HD (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

GC=GD (cmt); HA=HD (cmt) => GH là đường trung bình của tg ADC

\(\Rightarrow GH=\dfrac{1}{2}AC\) (4)

Từ (1) và (3) => EF//GH (cùng // với AC)

Từ (2) và (4) \(\Rightarrow EF=GH=\dfrac{1}{2}AC\)

=> EFGH là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

Gọi O là giao của AC và BD

Ta có

FG//BD (gt); GH//AC (gt) \(\Rightarrow\widehat{HGF}=\widehat{DOC}\) (Góc có cạnh tương ứng vuông góc)

Để EFGH là Hình chữ nhật \(\Rightarrow\widehat{HGF}=90^o\)

\(\Rightarrow\widehat{HGF}=\widehat{DOC}=90^o\Rightarrow AC\perp BD\)

Để EFGH là hình chữ nhật => ABCD phải có 2 đường chéo vuông góc với nhau

 

21 tháng 9 2023

a) Vì ABCD là hình bình hành (gt)

=> AB // CD (ĐN hình bình hành) 

     AB = CD (TC hình bình hành)

Vì M = AB/2 (M là trung điểm của AB)

     N = CD/2 (N là trung điểm của CD)

mà AB = CD (CMT)

=> M = N

=> AM // CN

=> Tứ giác AMCN là hình bình hành (DHNB hình bình hành)

 

 

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

20 tháng 9 2023

A B C E F I G

a/

Ta có

FA=FC; GB=GC => GF là đường trung bình của tg ABC

=> GF//AB Mà \(AB\perp AC\)

\(\Rightarrow GF\perp AC\)

=> AEGF là hình thang vuông tại A và F

b/

EI//BF (gt)

GF//AB => FI//BE

=> BEIF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

c/

Ta có GF là đường trung bình của tg ABC \(\Rightarrow GF=\dfrac{1}{2}AB\)

 BEIF là hbh (cmt) =>FI=EB

Mà \(EA=EB=\dfrac{1}{2}AB\)

=> GF=FI

Ta có

FA=FC

=> AGCI là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Mà \(GF\perp AC\Rightarrow GI\perp AC\)

=> AGCI là hình thoi (Hình bình hành có 2 đường chéo vuông góc là hình thoi)

d/

Để AGCI là hình vuông \(\Rightarrow AG\perp BC\) => AG là đường cao của tg ABC

Mà GB=GC => AG là đường trung tuyến của tg ABC

=> tg ABC là tg cân tại A (Tam giác có đường cao và đồng thời là đường trung tuyến là tg cân)

Mà \(\widehat{A}=90^o\) (gt)

=> Đk để AGCI là hình vuông thì tg ABC phải là tg vuông cân tại A

 

 

 

17 tháng 1

help me

19 tháng 9 2023

a)-(x-y)(x2+xy-1)=-(x3+x2y-x-x2y-xy2+y)

                          =-(x3-xy2-x+y)

                          =-x3+xy2+x-y

b)x2(x-1)-(x3+1)(x-y)=x3-x2-x3+x2y-x+y

                                =-x2+x2y-x+y

c)(3x-2)(2x-1)+(-5x-1)(3x+2)=6x2-3x-4x+2-15x2-10x-3x-2

                                             =-9x2-20x

d) hình như bạn ghi lỗi

Bài 2: C=x(x2-y)-x2(x+y)+y(x2-x)

             =x3-xy-x3-x2y+x2y-xy

             =-2xy

Thay x=1/2,y=-1 vào C, ta có:

        C=-2.1/2.(-1)=1

Vậy C=1 khi x=1/2 và y=-1.

19 tháng 9 2023

Gọi x là đơn vị tính theo m (x>0).

\(\left(x+2\right)\left(x-2\right)=60\)

\(\Rightarrow x^2-2^2=60\)

\(\Rightarrow x^2=60+4=64\)

\(\Rightarrow x=8\)

18 tháng 9 2023

a) \(\dfrac{x^3-1}{x^2+x+1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=x-1\)

b) \(\dfrac{x^2+2xy+y^2}{2x^2+xy-y^2}\)

\(=\dfrac{\left(x+y\right)^2}{x^2+xy+x^2-y^2}=\dfrac{\left(x+y\right)^2}{x\left(x+y\right)+\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{x+y}{\left(2x-y\right)}\)

c) \(\dfrac{ax^4-a^4x}{a^2+ax+x^2}\)

\(=\dfrac{ax\left(x^3-a^3\right)}{a^2+ax+x^2}\)

\(=\dfrac{ax\left(x-a\right)\left(a^2+ax+x^2\right)}{a^2+ax+x^2}\)

\(=ax\left(x-a\right)\)

18 tháng 9 2023

\(x\) + \(xy\) + y = 5 (\(x;y\in\) N)

(\(x\) + \(x\)y)   = 5 - y

\(x\).(1 + y) = 5 - y

\(x\)            =  \(\dfrac{5-y}{1+y}\) 

\(x\) \(\in\) N ⇔ 5 - y \(⋮\) 1 + y  ⇒  -(y + 1) + 6 ⋮ 1 + y

 ⇒ 6 ⋮ 1 + y ⇒ y + 1  \(\in\) Ư(6) = {1; 2; 3; 6} ⇒ y \(\in\) {0; 1; 2; 5}

Lập bảng ta có: 

\(y\) 0 1 2 5
\(x\) = \(\dfrac{5-y}{1+y}\) 5 2 1 0

Theo bảng trên ta có:

Các cặp số tự nhiên \(x\); y thỏa mãn đề bài lần lượt là:

   (\(x;y\)) = (5; 0); (2;1); (1;2); (0; 5)