c. 55 - 7 . ( x + 3) = 6
d. (-14) - x + (- 15) = - 10
A = 2 + 22 + 23 + 24 + ... + 259 + 260
Chứng Minh Rằng: A chia hết cho 21
Các bạn giải rõ ra choa mik nhed :)))))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng chính sách 1 thì cần trả số tiền là
657000-(657000x30:100)=459900(đồng)
Sử dụng chính sách 2 giảm 20% giá bán thì cần trả số tiền là
657000-(657000x20:100)=525600(đòng)
Sử dụng chính sách 2 thì cần trả số tiền là
525600-(525600x10:100)=473040(đồng)
Vì 459900 đồng<473040 đồng nên sử dụng chính sách 1 thì cần trả số tiền ít hơn chính sách 2
(ノ◕ヮ◕)ノ*
Giá tiền đôi giày theo chính sách 1:
\(657000-657000\times30\%=459900\) (đồng)
Giá tiền đôi giày theo chính sách 2:
\(657000-657000\times20\%-\left(657000-657000\times20\%\right)\times10\%=473040\) (đồng)
Do \(459900< 473040\) nên anh Tấn nên chọn chính sách 1 để mua đôi giày rẻ hơn
A = 8 - (4\(x\) - 7)2
Vì (4\(x\) - 7)2 ≥ 0 ⇒ - (4\(x\) - 7)2 ≤ 0 ⇒ 8 - (4\(x\) - 7) ≤ 8
Vậy Amax = 8 xảy ra khi 4\(x\) - 7 = 0 ⇒ \(x\) = \(\dfrac{7}{4}\)
Kết luận giá trị lớn nhất của biểu thức là 8 xảy ra khi \(x\) = \(\dfrac{7}{4}\)
Đặt \(A=8-\left(4x-7\right)^2\)
Do \(\left(4x-7\right)^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow-\left(4x-7\right)^2\le0\) với mọi \(x\in R\)
\(\Rightarrow8-\left(4x-7\right)^2\le8\) với mọi \(x\in R\)
Vậy GTLN của A là 8 khi \(x=\dfrac{7}{4}\)
\(4n+9⋮2n-1\)
\(\Rightarrow4n-2+11⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)+11⋮2n-1\)
\(\Rightarrow11⋮2n-1\)
\(\Rightarrow2n-1=Ư\left(11\right)\)
Mà n là số tự nhiên \(\Rightarrow2n-1\ge-1\)
\(\Rightarrow2n-1=\left\{-1;1;11\right\}\)
\(\Rightarrow n=\left\{0;1;6\right\}\)
\(25\cdot\left(-4\right)-54:9+\left(-48\right):\left(-8\right)=-100-6+6=-100\)
2023.(16 - 2024) + 2024.2023 - 16.(2023 + 10)
= 2023.16 - 2023.2024 + 2024.2023 - 16.2023 - 16.10
= (2023.16 - 16.2023) - (2023.2024 - 2024.2023) - 16.10
= 0 - 0 - 16.10
= - 160
\(2023.\left(16-2024\right)+2024.2023-16.\left(2023+10\right)\)
\(=2023.16-2023.2024+2023.2024-16.2023-16.10\)
\(=2023\left(16-16\right)+2023\left(2024-2024\right)-16.10\)
\(=0+0-160=-160\)
\(2023,24\times97+2023,24+4046,48\)
\(=2023,24\times97+2023,24+2023,24\times2\)
\(=2323,24\times\left(97+1+2\right)\)
\(=2023,24\times100\)
\(=202324\)
\(3n+10⋮n-1\Rightarrow3n-3+13⋮n-1\)
\(\Rightarrow3\left(n-1\right)+13⋮n-1\)
Do \(3\left(n-1\right)⋮n-1\Rightarrow13⋮n-1\)
\(\Rightarrow n-1=Ư\left(13\right)=\left\{-13;-1;1;13\right\}\)
\(\Rightarrow n=\left\{-12;0;2;14\right\}\)
Do n là số tự nhiên \(\Rightarrow n=\left\{0;2;14\right\}\)
Gọi \(d=ƯC\left(n+3;2n+5\right)\) với \(d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}n+3⋮d\\2n+5⋮d\end{matrix}\right.\) \(\Rightarrow2\left(n+3\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(n+3\) và \(2n+5\) nguyên tố cùng nhau với mọi số tự nhiên n
Gọi d = ƯCLN(n + 3, 2n + 50 với d ∈ N
Vậy và nguyên tố cùng nhau với mọi số tự nhiên n
c) \(55-7.\left(x+3\right)=6\)
\(7.\left(x+3\right)=55-6\)
\(7.\left(x+3\right)=49\)
\(x+3=49:7\)
\(x+3=7\)
\(x=7-3\)
\(x=4\)
d) \(-14-x+\left(-15\right)=-10\)
\(-29-x=-10\)
\(x=-29+10\)
\(x=-19\)
-----------------------------
Số số hạng của A:
\(60-1+1=60\) (số)
Do \(60⋮6\) nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 6 số hạng như sau:
\(A=\left(2+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5\right)+2^7.\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}.\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2.63+2^7.63+...+2^{55}.63\)
\(=63.\left(2+2^7+...+2^{55}\right)\)
\(=21.3.\left(2+2^7+...+2^{55}\right)⋮21\)
Vậy \(A⋮21\)
55-7(x+3)=6
7(x+3)=55-6=49
(x+3)=49:7=7
x=7-3=4
(-14)-x + (-15)=-10
(-14)-x=-10-15=-25
x =-14-25=-39
A chia hết 31 chứ