Thực hiện phép tính chia này:
x^2+4x+n : x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{matrix}\right.\)
=>`x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2>=0`
`<=>2x^2+2y^2+2z^2>=2xy+2yz+2zx`
`<=>x^2+y^2+z^2>=xy+yz+zx`
dấu ''='' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=y\\y=z\\x=z\end{matrix}\right.< =>x=y=z\)
Lời giải:
Từ $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$
$\Rightarrow xy+yz+xz=0$
Khi đó:
$x^2+2yz=x^2+yz-xz-xy=(x^2-xy)-(xz-yz)=x(x-y)-z(x-y)=(x-z)(x-y)$
Tương tự với $y^2+2zx, z^2+2xy$ thì:
$P=\frac{yz}{(x-z)(x-y)}+\frac{xz}{(y-z)(y-x)}+\frac{xy}{(z-x)(z-y)}$
$=\frac{-yz(y-z)-xz(z-x)-xy(x-y)}{(x-y)(y-z)(z-x)}=\frac{-[yz(y-z)+xz(z-x)+xy(x-y)]}{-[xy(x-y)+yz(y-z)+xz(z-x)]}=1$
Lời giải:
$x^2+4x+n=(x^2-2x)+(6x-12)+12+n=x(x-2)+6(x-2)+12+n$
$=(x-2)(x+6)+12+n$
Vậy $x^2+4x+n$ chia $x-2$ được thương là $x+6$ và dư $12+n$