K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2019

Giả sử: \(\sqrt{2005}-\sqrt{2004}\le\sqrt{2004}-\sqrt{2003}\)

\(\Leftrightarrow\sqrt{2005}+\sqrt{2003}\le2\sqrt{2004}\)

\(\Leftrightarrow\left(\sqrt{2005}+\sqrt{2003}\right)^2\le\left(2\sqrt{2004}\right)^2\)

\(\Leftrightarrow2005+2\sqrt{2005.2003}+2003\le4.2004\)

\(\Leftrightarrow4008+2\sqrt{\left(2004+1\right)\left(2004-1\right)}\le4008+4008\)

\(\Leftrightarrow2\sqrt{2004^2-1}\le4008\)

\(\Leftrightarrow\sqrt{2004^2-1}\le2004\)

\(\Leftrightarrow\sqrt{2004^2-1}\le\sqrt{2004^2}\)

Vậy giả sử đúng

\(\Rightarrow\sqrt{2005}-\sqrt{2004}\le\sqrt{2004}-\sqrt{2003}\)

18 tháng 8 2019

dùng sai dấu rồi ạ :)) dùng dấu <  thay cho dấu  ≤  nhé

21 tháng 8 2019

Theo quy tắc 4 điểm thì \(\hept{\begin{cases}OA+AB+O'B\ge OO'\\OA+OO'+O'B\ge AB\end{cases}}\Leftrightarrow\hept{\begin{cases}AB\ge OO'-\left(R+R'\right)\left(const\right)\\AB\le OO'+\left(R+R'\right)\left(const\right)\end{cases}}\)

=> AB nhỏ nhất khi A, B nằm giữa OO' ; A, B lớn nhất khi OO' nằm giữa AB 

18 tháng 8 2019

+ Xét tam giác bất kì ABC có Bvà C lần lượt nằm trong hai tia Ox và Oy 

+ Gọi A' và A''  là các điểm đối xứng với điểm A  lần lượt qua các đường thẳng Ox và Oy . 

Ta có \(AB=A'B\)  và \(AC=A'CC\)( do các tam giác \(ABA'\)và tam giác \(ACA''\)là tam giác cân).

+ Gọi 2p là chu vi của tam giác ABC thì có :

2p = \(AB+BC+CA=A'B+BC+CA''\ge A'A''\)

Dấu'' bằng '' xảy ra khi 4 điểm \(A'B,C,A''\)thẳng hàng . 

Nên để chu vi tam giác ABC bé nhất thì phải lấy B và lần lượt là giao điểm của đoạn thẳng \(A'A''\)với hai tia Ox và Oy ( các giao điểm đó tồn tại vì góc xOy nhọn ) 

Chúc bạn học tốt !!!

18 tháng 8 2019

Chia cả tử và mẫu cho \(\sin a\)ta được

\(\frac{\sin a-\cos a}{\sin a+\cos a}=\frac{\frac{\sin a}{\sin a}-\frac{\cos a}{\sin a}}{\frac{\sin a}{\sin a}+\frac{\cos a}{\sin a}}=\frac{1-\cot a}{1+\cot a}=\frac{1-0,7456}{1+0,7456}=\frac{\frac{159}{625}}{\frac{1091}{625}}=\frac{159}{1091}\)

18 tháng 8 2019

a, \(19-8\sqrt{3}=16-2.4.\sqrt{3}+3=\left(4-\sqrt{3}\right)^2\)

c, \(17+3\sqrt{32}=17+12\sqrt{2}=3^2+2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2=\left(3+2\sqrt{2}\right)^2\)

d, \(28-10\sqrt{3}=25-2.5.\sqrt{3}+3=\left(5-\sqrt{3}\right)^2\)

P/s: bí câu b ghê :<