một phòng họp có 100 chỗ ngồi , nhưng số người đến họp là 144 người do đó người ta phải kê them 2 dãy ghế và mối dãy ghế thêm 2 người ngồi . hỏi phòng họp lúc đầu có bao nhiêu dãy ghế
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:\(HD\perp AH;AK\perp AH\Rightarrow HD//AK\)
Mà\(AK\perp KD\Rightarrow HD\perp KD\)
Suy ra tứ giác AHDK là hình chữ nhật suy ra HK=AD(đpcm)
b)Ta có vì AHDK là hình vuông nên AH=HD=DK=AK
Suy ra tam giác AHD vuông cân tại H
\(\Rightarrow\widehat{HAD}=\widehat{HDA}=45^0\)
\(\Rightarrow\widehat{DAK}=90^0-45^0=45^0\)
\(\Rightarrow\widehat{HAD}=\widehat{DAK}\)hay AD là tia phân giác của góc A
Vậy AHDK là hình vuông khi và chỉ khi AD là tia phân giác của góc A
c)Ta có:Để HK nhỏ nhất thì AD nhỏ nhất
Suy ra AD vuông góc với BC
Vậy HK nhỏ nhất khi và chỉ khi D là hình chiếu của A trên BC
a) Đk: x \(\ne\)-2
Ta có: \(\frac{2}{x+2}-\frac{2x^2+16}{x^2+8}=\frac{5}{x^2-2x+4}\)
<=> \(\frac{2\left(x^2-2x+4\right)-\left(2x^2+16\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{5\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
<=> 2x2 - 4x + 8 - 2x2 - 16 = 5x + 10
<=> -4x - 8 = 5x + 10
<=> -4x - 5x = 10 + 8
<=> -9x = 18
<=> x = -2 (ktm)
=> pt vô nghiệm
b) Đk: x \(\ne\)2; x \(\ne\)-3
Ta có: \(\frac{1}{x-2}-\frac{6}{x+3}=\frac{5}{6-x^2-x}\)
<=> \(\frac{x+3}{\left(x-2\right)\left(x+3\right)}-\frac{6\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{5}{\left(x-2\right)\left(x+3\right)}\)
<=> x + 3 - 6x + 12 = -5
<=> -5x = -5 - 15
<=> -5x = -20
<=> x = 4
vậy S = {4}
c) Đk: x \(\ne\)8; x \(\ne\)9; x \(\ne\)10; x \(\ne\)11
Ta có: \(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
<=> \(\left(\frac{8}{x-8}+1\right)+\left(\frac{11}{x-11}+1\right)=\left(\frac{9}{x-9}+1\right)+\left(\frac{10}{x-10}+1\right)\)
<=> \(\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)
<=> \(x\left(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\right)=0\)
<=> x = 0 (vì \(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\ne0\)
Vậy S = {0}
Gọi V ô tô là x =>Sau 4h :S1= 4x
Vậy V xe máy là 6/5x =>Sau4h :S2=24/5x
Ta có phương trình:
SAB: S1+S2
=> 4x+24/5x = 44x/5
=> Vậy T ô tô là 44x/5 : x = 8.8 h
( mik không biết câu hỏi của bạn là gì nhưng thôi cứ cho là hỏi thời gian nếu đúng thì cho mik )
Có phải ý bạn là AD là tia phân giác ^HAC ko ?
Áp dụng định lí Pythagoras vào △ABC ta được :
BC2 = AB2 + AC2
\(\Rightarrow\)BC2 = 62 + 82
\(\Rightarrow\)BC2 = 100
\(\Rightarrow\)BC2 = 10 cm
Ta có : \(S_{ABC}=\frac{AB.AC}{2}=\frac{BC.AH}{2}\)
\(\Rightarrow AB.AC=BC.AH\)
\(\Rightarrow AH=\frac{AB.AC}{BC}\)
\(\Rightarrow AH=\frac{6.8}{10}=4,8\left(cm\right)\)
Áp dụng định lý Pythagoras vào △AHC ta được :
AC2 = HC2 + AH2
\(\Rightarrow\)82 = HC2 + 4,82
\(\Rightarrow\)HC2 = 64 - 23,04
\(\Rightarrow\)HC2 = 40,96
\(\Rightarrow\)HC = 6,4 cm
Xét △AHC có AD là tia phân giác ^HAC
\(\Rightarrow\frac{HD}{AH}=\frac{DC}{AC}\)
Áp dụng tính chất dạy tỉ số bằng nhau, ta có :
\(\Rightarrow\frac{HD}{4,8}=\frac{HC}{8}=\frac{HD+DC}{4,8+8}=\frac{HC}{12,8}=\frac{6,4}{12,8}=\frac{1}{2}\)
\(\Rightarrow HD=\frac{1}{2}.4,8=2,4\left(cm\right)\)
Vậy HD = 2,4 cm
a) Ta có:
2(m – 2) x + 3 = m – 5
<=> 2(m - 2)x + 8 - m = 0
Để phương trình là phuong trình bậc nhất một ẩn thì
a \(\ne\)0
<=> 2(m - 1) khác 0
<=> m - 1 \(\ne\)0
<=> m \(\ne\)1
1,
a, 2(m-2)x+3=m-5
<=> 2(m-2)x+3-m+5=0
<=> 2(m-3)x-m+8=0
PT (1) là PT bậc nhất 1 ẩn thì m-2\(\ne\)0
\(\Leftrightarrow m\ne2\)
b) có 2x+5=(x+7)-1
<=> 2x+5=x+7-1
<=> 2x+5=x+6
<=> x-1=0
<=> x=1
Để PT (1) tương đương với pt x-1=0 thì \(\hept{\begin{cases}2\left(m-2\right)=1\\-m+8=-1\end{cases}\Leftrightarrow\hept{\begin{cases}m-2=\frac{1}{2}\\-m=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=\frac{5}{2}\\m=9\end{cases}}}\)(Vô lí)
Vậy không có m thỏa mãn điều kiện
a) (x - 2)3 + (3x - 1)(3x + 1) = (x + 1)3
<=> x3 - 6x2 + 12x - 8 + 9x2 - 1 = x3 + 3x2 + 3x + 1
<=> x3 + 3x2 + 12x - x3 - 3x2 - 3x = 1 + 9
<=> 9x = 10
<=> x = 10/9
vậy S = {10/9}
b) (x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)
<=> x3 - 3x2 + 3x - 1 - x3 - 2x2 - x = 10x - 5x2 - 11x - 22
<=> -5x2 + 2x - 10x + 5x2 + 11x = -22 + 1
<=> 3x = -21
<=> x = -7
Vậy S = {-7}
c) (x + 1)(2x - 3) = (2x - 1)(x + 5)
<=> 2x2 - x - 3 = 2x2 + 9x - 5
<=> 2x2 -x - 2x2 - 9x = -5 + 3
<=>-10x = -2
<=> x = 1/5 Vậy S = {1/5}
d) (x - 1) - (2x - 1) = 9 - x
<=> x - 1 - 2x + 1 = 9 - x
<=> -x + x = 9
<=> 0x = 9 (vô nghiệm)
=> pt vô nghiệm
e) (x - 3)(x + 4) - 2(3x - 2) = (x - 4)2
<=> x2 + x - 12 - 6x + 4 = x2 - 8x + 16
<=> x2 - 5x - x2 + 8x = 16 + 8
<=> 3x = 24
<=> x = 8
Vậy S = {8}
g) (x + 1)(x2 - x + 1) - 2x = x(x + 1)(x - 1)
<=> x3 + 1 - 2x = x3 - x
<=> x3 - 2x - x3 + x = -1
<=> -x = -1 <=> x = 1
Vậy S = {1}