K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2020

Từ giả thiết : \(abc=b+2c\)

\(\Leftrightarrow\frac{b+2c}{bc}=a\)

\(\Leftrightarrow\frac{1}{c}+\frac{2}{b}=a\)(1)

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có : \(P=\frac{3}{b+c-a}+\frac{4}{c+a-b}+\frac{5}{a+b-c}\)

\(=\frac{1}{b+c-a}+\frac{1}{c+a-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)\)

\(\ge\frac{4}{2c}+2\cdot\frac{4}{2b}+3\cdot\frac{4}{2a}=\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)

Áp dụng (1) vào \(P\)\(\frac{2}{c}+\frac{4}{b}+\frac{6}{c}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)

Vậy \(Min_P=4\sqrt{3}\Leftrightarrow a=b=c=\sqrt{3}\)

14 tháng 6 2020

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y},x>0,y>0\)

\(P=\frac{1}{b+c-a}+\frac{1}{a+c-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)

\(\Rightarrow P\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)

Từ giả thiết ta có: \(\frac{1}{c}+\frac{2}{b}=a\) nên \(\frac{2}{c}+\frac{4}{b}+\frac{6}{a}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)

Vậy giá trị nhỏ nhất của P=\(4\sqrt{3}\) đạt được khi \(a=b=c=\sqrt{3}\)

Bạn kia làm sai r

Ta có đánh giá quen thuộc \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)

mà \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)

do đó \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{a+b+c}{abc}=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)}\ge\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\)

Phép chứng minh hoàn tất khi ta cm được

\(\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)

hay \(3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

Theo bđt AM-GM ta có

\(\left(a+b+c\right)^2=\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\)

\(\ge3\sqrt[3]{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}\)

hay \(\left(a+b+c\right)^6\ge27\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

mà a+b+c=3 nên \(\left(a+b+c\right)^6=81\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

16 tháng 6 2020

Xét BĐT phụ \(\frac{1}{a^2}+4a\ge a^2+4\Leftrightarrow\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}\ge0\)

Đến đây, ta đưa điều phải chứng minh về dạng \(\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}+\frac{\left(b-1\right)^2\left(1+2b-b^2\right)}{b^2}+\frac{\left(c-1\right)^2\left(1+2c-c^2\right)}{c^2}\ge0\)(*)

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

Xét hai trường hợp:

Trường hợp 1: \(a\le1+\sqrt{2}\Rightarrow c\le b\le a\le1+\sqrt{2}\)

Khi đó thì \(1+2a-a^2\ge0;1+2b-b^2\ge0;1+2c-c^2\ge0\)dẫn đến (*) đúng

Trường hợp 2: \(a>1+\sqrt{2}\Rightarrow b+c=3-a< 3-\left(1+\sqrt{2}\right)=2-\sqrt{2}< \frac{2}{3}\)

\(\Rightarrow bc\le\frac{\left(b+c\right)^2}{4}< \frac{\frac{4}{9}}{4}=\frac{1}{9}\)

Mà a,b,c dương nên \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}>18>\left(a+b+c\right)^2>a^2+b^2+c^2\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

8 tháng 7 2020

\(n+1⋮\left(\sqrt{n}-1\right)\)

\(\left(n-1+2\right)⋮\left(\sqrt{n}-1\right)\)

\(2⋮\left(\sqrt{n}-1\right)\)

suy ra n=9

3 tháng 7 2020

Theo đề bài, ta có:

\(k^2=160...081\)

Để \(k^2\) có chữ số tận cùng là 1 như đề bài cho thì \(k\) phải có chữ số tận cùng là 1(1) hoặc 9(2).

Áp dụng phép đặt tính với (1) và (2) ta tìm được \(k=...009\)

Lại có : \(k^2=160...081=160...000+81\in\left\{4000^2+81,40000^2+81,400000^2+81,...\right\}\)

\(\left\{4000^2+81,40000^2+81,400000^2+81,...\right\}< \left\{5000^2,50000^2,500000^2,...\right\}\Rightarrow k\in\left\{4009,40009,400009,...\right\}\)

Thử lại : \(4009^2=16072081\) (đúng)

              \(40009^2=1600720081\) (đúng)

              \(...\)

Vậy có tồn tại số \(k\) nguyên dương (\(k\in\left\{4009,40009,400009,...\right\}\)) để \(160...081\) là số chính phương.

13 tháng 6 2020

Bài làm:
Ta có: \(\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)\(\left(1\right)\)\(\Leftrightarrow\hept{\begin{cases}2x^2+2=8y-2y^2-2xy\\y\left(x+y\right)^2=2x^2+2+7y\end{cases}\Leftrightarrow\hept{\begin{cases}2\left(x^2+1\right)=8y-2y^2-2xy\\y\left(x+y\right)^2=2\left(x^2+1\right)+7y\end{cases}}}\)

\(\Rightarrow y\left(x+y\right)^2=-2y^2-2xy+15y\)

\(\Leftrightarrow y\left(x+y\right)^2+2y^2+2xy-15y=0\)

\(\Leftrightarrow y\left[\left(x+y\right)^2+2\left(x+y\right)-15\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{cases}}\)

+ Nếu \(y=0\), thay vào phần trên của HPT \(\left(1\right)\), ta được: \(x^2+1=0\)

Mà \(x^2+1\ge1>0\left(\forall x\right)\)

=> Mâu thuẫn => Không tồn tại x,y thỏa mãn HPT

+ Nếu \(\left(x+y\right)^2+2\left(x+y\right)-15=0\)

\(\Leftrightarrow\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]-16=0\)

\(\Leftrightarrow\left(x+y+1\right)^2-\left(4\right)^2=0\)

\(\Leftrightarrow\left(x+y+5\right)\left(x+y-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+5=0\\x+y-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\left(y+5\right)\\x=3-y\end{cases}}}\)

Đến đây ta lại xét 2 TH sau:

+ TH1: \(x=-\left(y+5\right)\)thay vào phần trên của HPT \(\left(1\right)\)ta được:

\(\left(y+5\right)^2+y^2-\left(y+5\right)y+1=4y\)

\(\Leftrightarrow y^2+10y+25+y^2-y^2-5y+1-4y=0\)

\(\Leftrightarrow y^2+y+26=0\)

\(\Leftrightarrow\left(y+\frac{1}{2}\right)^2+\frac{103}{4}=0\)

Mà \(\left(y+\frac{1}{2}\right)^2+\frac{103}{4}\ge\frac{103}{4}>0\left(\forall y\right)\)

=> Mâu thuẫn

=> Không tồn tại x,y thỏa mãn HPT

+ TH2: \(x=3-y\), thay vào phần trên của HPT \(\left(1\right)\), ta được:

\(\left(3-y\right)^2+y^2+\left(3-y\right)y+1=4y\)

\(\Leftrightarrow9-6y+y^2+y^2+3y-y^2+1-4y=0\)

\(\Leftrightarrow y^2-7y+10=0\)

\(\Leftrightarrow\left(y-2\right)\left(y-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2\\y=5\end{cases}\Leftrightarrow}\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=2\end{cases}}\\\hept{\begin{cases}x=-2\\y=5\end{cases}}\end{cases}}}\)

Vậy \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)hoặc \(\hept{\begin{cases}x=-2\\y=5\end{cases}}\)

Em mới hc lp 8 nên ko bt làm có đúng ko ạ!!


 

13 tháng 6 2020

Ở đoạn gần cuối em viết phương trình bị lỗi ko hiện nên em làm tiếp chỗ đó ạ:

\(...\)

\(\left(y-2\right)\left(y-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2\\y=5\end{cases}}}\)

+ Nếu \(y=2\)thì thay vào PT \(y=3-x\)\(\Rightarrow x=1\)

+ Nếu \(y=5\)thì thay vào PT \(y=3-x\)\(\Rightarrow x=-2\)

\(...\)

ĐK: \(x\ge\frac{1}{5}\)

\(PT\Leftrightarrow\left[x+1-\sqrt{5x-1}\right]+\left[x+1-\sqrt[3]{9-x}\right]+2x^2+x-3=0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)}{x+1+\sqrt{5x-1}}+\frac{\left(x-1\right)\left(x^2+4x+8\right)}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}+\left(2x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\frac{x-2}{x+1+\sqrt{5x-1}}+....\right]=0\)

=> x=1

Ta chứng minh vế trong ngoặc >0

Từ ĐK ta có \(2x+3+\frac{x-2}{x+1+\sqrt{5x-1}}>\frac{17}{5}+\left(\frac{1}{5}-2\right)=\frac{8}{5}>0\)

8 tháng 8 2020

\(ĐK:x\ge\frac{1}{5}\)

\(\sqrt{5x-1}+\sqrt[3]{9-x}=2x^2+3x-1\)

\(\Leftrightarrow\left(\sqrt{5x-1}-2\right)+\left(\sqrt[3]{9-x}-2\right)=2x^2+3x-5\)

\(\Leftrightarrow\frac{5\left(x-1\right)}{\sqrt{5x-1}+2}-\frac{x-1}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\left(x-1\right)\left(2x+5\right)\)

\(\Leftrightarrow\left(x-1\right)\left(2x+5+\frac{1}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}-\frac{5}{\sqrt{5x-1}+2}\right)=0\)

Với điều kiện \(x\ge\frac{1}{5}\)thì  \(2x+5-\frac{5}{\sqrt{5x-1}+2}\ge2.\frac{1}{5}+5-\frac{5}{0+2}=\frac{29}{10}>0\)

Suy ra \(2x+5+\frac{1}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}-\frac{5}{\sqrt{5x-1}+2}>0\)

\(\Rightarrow x-1=0\Leftrightarrow x=1\)

Vậy phương trình có một nghiệm duy nhất là x = 1

12 tháng 6 2020

Với A là một tập con của tập hợp {1;2;...;2014} thỏa mãn yêu cầu đề bài toán, gọi a là phần tử nhỏ nhất của A

Xét \(b\in A,b\ne a\) ta có b>a và \(\frac{a^2}{b-a}\ge a\Rightarrow b\le2a\)(1)

Gọi c,d là phần tử lớn nhất trong A, c<d từ (1) ta có: \(d\le2a\le2c\left(2\right)\)

Theo giả thiết \(\frac{c^2}{d-c}\in A\). Mặt khác do (2) nên  \(\frac{c^2}{d-c}\ge\frac{c^2}{2c-c}\ge c\Rightarrow\frac{c^2}{d-c}\in\left\{c;d\right\}\)

Xét các trường hợp sau:

  • Trường hợp 1: \(\frac{c^2}{d-c}=d\)trong trường hợp này ta có: \(\frac{c}{d}=\frac{-1+\sqrt{5}}{2}\) mâu thuẫn với \(c,d\inℤ^+\)
  • Trường hợp 2: \(\frac{c^2}{d-c}=c\)trong trường hợp này ta có: d=2c. Kết hợp với (2) => c=d và d=2a

Do đó: A={a;2} với a=1;2;...;1007. Các tập hợp trên đều thỏa mãn yêu cầu đề bài

Vậy có tất cả 1007 tập hợp thỏa mãn

12 tháng 6 2020

a) Gọi K là giao của MN và CD

Ta có: \(\widehat{BMN}=\widehat{MTD}\)(so le trong và MN//AP) và \(\widehat{MTD}=\widehat{APD}\) (đồng vị và MN//AP)

\(\Rightarrow\widehat{BMN}=\widehat{APD}\)

Xét \(\Delta BMN\)và \(\Delta DPA\)có:

\(\hept{\begin{cases}\widehat{MBN}=\widehat{PDA}\left(=90^o\right)\\\widehat{BMN}=\widehat{APD}\left(cmt\right)\end{cases}}\)

=> \(\Delta BMN~\Delta DPA\left(g.g\right)\Rightarrow\frac{BM}{DP}=\frac{BN}{DA}\Rightarrow\frac{BM}{BN}=\frac{DP}{DA}\)

Mà \(BM=\frac{AB}{2},DA=BD\sin\widehat{ABD}=\frac{\sqrt{2}BD}{2}=\sqrt{2}OB\)

Do đó: \(\frac{\frac{\sqrt{2}OD}{2}}{BN}=\frac{DP}{\sqrt{2}OB}\Rightarrow\frac{OD}{BN}=\frac{DP}{OB}\)

Xét \(\Delta DOP\)và \(\Delta BNO\)có: \(\hept{\begin{cases}\widehat{ODP}=\widehat{NBO}\left(=45^o\right)\\\frac{OD}{BN}=\frac{DP}{OB}\end{cases}\Rightarrow\Delta DOP~\Delta BNO\left(c.g.c\right)\Rightarrow\widehat{DOP}=\widehat{BNO}}\)

Mà \(\widehat{DON}=\widehat{BNO}+\widehat{OBN}=\widehat{BNO}+45^o\)

Và \(\widehat{DON}=\widehat{DOP}+\widehat{NOP}\)

Do vậy \(\widehat{NOP}=45^o\)

12 tháng 6 2020

2. Ta có \(\frac{OP}{ON}=\frac{OD}{BN}\left(\Delta DOP~\Delta BNO\right)\)

Nên \(\frac{OP}{ON}=\frac{OB}{BN}\Rightarrow\frac{OP}{OB}=\frac{ON}{BN}\) 

Xét \(\Delta OPN\)và \(\Delta BQN\)có: \(\hept{\begin{cases}\widehat{PON}=\widehat{OBN}\left(=45^o\right)\\\frac{OP}{OB}=\frac{ON}{BN}\end{cases}\Rightarrow\Delta OPN~\Delta BON\left(c.g.c\right)\Rightarrow\widehat{OPN}=\widehat{BON}}\)

Gọi I là tâm đường tròn ngoại tiếp tam giác NOP

Ta có \(\widehat{ION}=\frac{180^o-\widehat{OIN}}{2}=90^o-\widehat{OPN}=\widehat{BOC}-\widehat{BON}=\widehat{CON}\)

=> 2 tia OI,OC trùng nhau 

Vậy I thuộc OC

8 tháng 7 2020

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) fhhhhhhhhh