K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

Ta có a3+b3=(a+b)(a2−ab+b2)=a2−ab+b2a3+b3=(a+b)(a2−ab+b2)=a2−ab+b2 ( vì a+b=1)

Lại có 2(a−b)2≥0⇔2a2−4ab+2b2≥0⇔4a2−4ab+4b2≥2a2+2b2⇔4(a2−ab+b2)≥2(a2+b2)≥(a+b)2=1⇔4(a2−ab+b2)≥1⇔a2−ab+b2≥14⇒a3+b3≥142(a−b)2≥0⇔2a2−4ab+2b2≥0⇔4a2−4ab+4b2≥2a2+2b2⇔4(a2−ab+b2)≥2(a2+b2)≥(a+b)2=1⇔4(a2−ab+b2)≥1⇔a2−ab+b2≥14⇒a3+b3≥14

Vậy Min M=14⇔a=b=1214⇔a=b=12

15 tháng 9 2019

a) Hàm số nghịch biến trên R <=> a < 0 

                                                <=> 2m - 1 < 0

                                                <=> 2m      < 1 

                                                <=>  m        < 1/2 

b) Gọi điểm bị cắt là A ( x;y )

cắt trục hoành tại điểm có tọa độ -1 

=> x = -1 ; y = 0 

=> A ( -1 ; 0 ) 

Ta có y = ( 2m - 1)x + m - 1 cắt A ( -1;0 ) 

=> 0 = ( 2m -1 ). ( -1 ) + m - 1

<=> -2m + 1 + m - 1 =0

<=>  -m = 0

<=>  m = 0 

Vậy khi m = 0 thì đồ thị của hàm số cắt trục hoành tại điểm có hoành độ -1 

c) y x 0 1 4 M ( 1;4 ) y=(2m............ -1 E F H

Vì đồ thị của hàm số ( đtchs ) đi qua M(1;4) nên thay điểm M vào đtchs ta được:

         4 = ( 2m - 1).1+m - 1 

<=>  4 =   2m - 1 + m - 1

<=>  4 =     3m - 2

<=>  6 = 3m

<=>  m = 2  ( 1 ) 

Gọi \(E\left(x_E;y_E\right)\)là điểm nằm trên trục tung vào được đtchs đi qua

Và ta có \(x_E=0\) ( vì xE trùng với góc tọa độ )   ( 2 ) 

Thay ( 1 ) và ( 2 ) vào đtchs ta được: 

y = ( 2 . 2 - 1 ). 0 + 2 - 1 

y =     2 - 1

y =       1

Áp dụng hệ thức lượng vào tam giác OEF vuông tại O

\(\frac{1}{OH^2}=\frac{1}{OE^2}+\frac{1}{OF^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{1^2}+\frac{1}{\left(-1\right)^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=2\)

\(\Leftrightarrow2OH^2=1\)

\(\Leftrightarrow OH^2=\frac{1}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}OH=\frac{\sqrt{2}}{2}\left(nhận\right)\\OH=-\frac{\sqrt{2}}{2}\left(loại\right)\end{cases}}\)  ( loại -v2/2 vì độ dài không có giá trị âm )

Vậy khoảng cách từ gốc tọa độ O đến đường thẳng đó là \(\frac{\sqrt{2}}{2}\) 

HỌC TỐT  !!!! 

15 tháng 9 2019

Dat \(P=\frac{a^4}{b+c}+\frac{b^4}{c+a}+\frac{c^4}{a+b}\)

\(=\frac{a^6}{a^2b+ca^2}+\frac{b^6}{b^2c+ab^2}+\frac{c^6}{c^2a+bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Ta di chung minh:

\(\frac{\left(a^3+b^3+c^3\right)^2}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\frac{a^3+b^3+c^3}{2}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

Ta co BDT:

\(a^3+b^3\ge ab\left(a+b\right)\)

\(b^3+c^3\ge bc\left(b+c\right)\)

\(c^3+a^3\ge ca\left(c+a\right)\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

Suy ra BDT da duoc chung minh

Dau '=' ra khi \(a=b=c\)

20 tháng 9 2019

Dat P=\frac{a^4}{b+c}+\frac{b^4}{c+a}+\frac{c^4}{a+b}P=b+ca4​+c+ab4​+a+bc4​

=\frac{a^6}{a^2b+ca^2}+\frac{b^6}{b^2c+ab^2}+\frac{c^6}{c^2a+bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}=a2b+ca2a6​+b2c+ab2b6​+c2a+bc2c6​≥ab(a+b)+bc(b+c)+ca(c+a)(a3+b3+c3)2​

Ta di chung minh:

\frac{\left(a^3+b^3+c^3\right)^2}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\frac{a^3+b^3+c^3}{2}ab(a+b)+bc(b+c)+ca(c+a)(a3+b3+c3)2​≥2a3+b3+c3​

\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)⇔2(a3+b3+c3)≥ab(a+b)+bc(b+c)+ca(c+a)

Ta co BDT:

a^3+b^3\ge ab\left(a+b\right)a3+b3≥ab(a+b)

b^3+c^3\ge bc\left(b+c\right)b3+c3≥bc(b+c)

c^3+a^3\ge ca\left(c+a\right)c3+a3≥ca(c+a)

\Rightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)⇒2(a3+b3+c3)≥ab(a+b)+bc(b+c)+ca(c+a)

Suy ra BDT da duoc chung minh

Dau '=' ra khi a=b=ca=b=c

15 tháng 9 2019

PT <=> \(x^2-12+\left(x-4\right)\left(\sqrt{x^2+4}-4\right)=0\)

<=> \(x^2-12+\left(x-4\right).\frac{x^2-12}{\sqrt{x^2+4}+4}=0\)

<=> \(\orbr{\begin{cases}x^2-12=0\\1+\frac{x-4}{\sqrt{x^2+4}+4}=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\pm2\sqrt{3}\\x=-\sqrt{x^2+4}\left(VN\right)\end{cases}}\)

Vậy \(x=\pm2\sqrt{3}\)

6 tháng 5 2020

IMO, 2001

Đặt \(x=\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\left(x;y;z\in\left(0;1\right)\right)\)

Để ý rằng \(\frac{a^2}{8bc}=\frac{x^2}{1-x^2};\frac{b^2}{8ac}=\frac{y^2}{1-y^2};\frac{c^2}{8ba}=\frac{z^2}{1-z^2}\)

=> \(\frac{1}{512}=\left(\frac{x^2}{1-x^2}\right)\left(\frac{y^2}{1-y^2}\right)\left(\frac{z^2}{1-z^2}\right)\)

Ta cần chứng minh \(x+y+z\ge1\)với \(x;y;z\in\left(0;1\right)\)và \(\left(1-x^2\right)\left(1-y^2\right)\left(1-z^2\right)=512\left(xyz\right)^2\left(1\right)\)

Giả sử ngược lại x+y+z<1

Theo BĐT AM-GM ta có:

\(\left(1-x^2\right)\left(1-y^2\right)\left(1-z^2\right)>\left[\left(x+y+z\right)^2-x^2\right]\left[\left(x+y+z\right)^2-y^2\right]\left[\left(x+y+z\right)^2-z^2\right]\)

\(=\left(x+x+y+z\right)\left(y+z\right)\left(x+y+z+y\right)\left(z+x\right)\left(z+z+x+y\right)\left(x+y\right)\)

\(\ge4\left(x^2yz\right)^{\frac{1}{4}}\cdot2\left(yz\right)^{\frac{1}{2}}\cdot4\left(y^2zx\right)^{\frac{1}{4}}\cdot2\left(xz\right)^{\frac{1}{2}}\cdot4\left(z^2xy\right)^{\frac{1}{4}}\cdot2\left(xy\right)^{\frac{1}{2}}=512\left(xyz\right)^2\)

Điều này mâu thuẫn với (1)

Vậy điều phản chứng là sai và ta có đpcm