K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

\(3^x+171=y^2\)

+) Với x = 0 ta có: \(1+171=y^2\)( loại )

+) Với x = 1, ta có: \(3+171=y^2\)( loại )

+) Với x > 1.

pt <=> \(9\left(3^{x-2}+19\right)=y^2\)

=> \(3^{x-2}+19=z^2\)với \(y=3z\)( z là số tự nhiên )

+) TH1: \(x-2=2k+1\)( k là số tự nhiên )

Ta có: \(3^{2k+1}+19=z^2\)

có: \(3^{2k+1}+19⋮2\)

nhưng \(3^{2k+1}+19=3^{2k}.3+1+16+2\): 4 dư 2

=> \(3^{2k+1}+19\) không phải là số chính phương

Vậy loại trường hợp này

+) TH2: \(x-2=2k\)( k là số tự nhiên )

Ta có: \(3^{2k}+19=z^2\)

<=> \(\left(z-3^k\right)\left(z+3^k\right)=19\) (1)

z, 3^k là số tự nhiên nên ( 1) <=> \(\hept{\begin{cases}z+3^k=19\\z-3^k=1\end{cases}\Leftrightarrow}\hept{\begin{cases}z=10\\k=2\end{cases}}\)=> x = 6; y = 30. Thử lại thấy thỏa mãn

Vậy....

10 tháng 12 2019

Đặt: \(A=\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}>0\)

<=> \(A.\sqrt{4+\sqrt{13}}=\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}\)

<=> \(A^2\left(4+\sqrt{13}\right)=4+\sqrt{3}+4-\sqrt{3}+2\sqrt{13}\)

<=> \(A^2\left(4+\sqrt{13}\right)=2\left(4+\sqrt{13}\right)\)

<=> \(A=\sqrt{2}\)

Vậy: \(\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\)

\(=\sqrt{2}+\sqrt{25-2.5.\sqrt{2}+2}\)

\(=\sqrt{2}+\left(5-\sqrt{2}\right)=5\)

10 tháng 12 2019

Heron \(4\sqrt{3}S=\sqrt{3\left(a^2+b^2+c^2\right)^2-6\left(a^4+b^4+c^4\right)}\)

Cần CM: \(a^2+b^2+c^2\ge\sqrt{3\left(a^2+b^2+c^2\right)^2-6\left(a^4+b^4+c^4\right)}\)

\(\Leftrightarrow\)\(3\left(a^4+b^4+c^4\right)\ge\left(a^2+b^2+c^2\right)^2\) đúng (Cauchy-Schwarz)

Dấu "=" xảy ra khi ABC đều 

11 tháng 12 2019

\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)

\(=|1-x|+|x+2|\ge|1-x+x+2|=3\)

11 tháng 12 2019

\(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)

\(\Leftrightarrow x\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)

Làm nốt