Tìm x:
a)16x2-(4x-5)2=15
b)(2x+3)2-4(x-1)(x+1)=49
c)(2x+1)(1-2x)+(1-2x)2=18
d)2(x+1)2-(x-3)(x+3)-(x-4)2=0
e)(x-5)2-x(x-4)=9
f)(x-5)2+(x-4)(1-x)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = (x+3)2 + (x-3)(x+3) - 2(x+2)(x - 4)
= (x + 3)(x + 3) + (x - 3)(x + 3) - 2[x(x - 4) + 2(x - 4)]
= x(x + 3) + 3(x + 3) + x(x + 3) - 3(x + 3) - 2[x2 - 4x + 2x - 8]
= x2 + 3x + 3x + 9 + x2 + 3x - 3x - 9 - 2(x2 - 2x - 8)
= x2 + 3x + 3x + 9 +x2 + 3x - 3x - 9 - 2x2 + 4x + 16
= (x2 + x2 - 2x2) + (3x + 3x + 3x - 3x + 4x) + (9 - 9 + 16) = 10x + 16
Thay x = -1/2 vào biểu thức trên ta có : \(10\cdot\left(-\frac{1}{2}\right)+16=-5+16=11\)
b) \(B=\left(3x+4\right)^2-\left(x-4\right)\left(x+4\right)-10x\)
\(B=9x^2+24x+16-x\left(x+4\right)+4\left(x+4\right)-10x\)
\(B=9x^2+24x+16-x^2-4x+4x+16-10x\)
\(B=\left(9x^2-x^2\right)+\left(24x-4x+4x-10x\right)+\left(16+16\right)\)
\(B=8x^2+14x+32\)
Thay x = -1/10 vào biểu thức trên ta có : \(B=8\cdot\left(-\frac{1}{10}\right)^2+14\cdot\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)
c) \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)
\(C=x^2+2x+1-\left(2x-1\right)\left(2x-1\right)+3\left(x^2-4\right)\)
\(C=x^2+2x+1-2x\left(2x-1\right)+1\left(2x-1\right)+3x^2-12\)
\(C=x^2+2x+1-4x^2+2x+2x-1+3x^2-12\)
\(C=\left(x^2-4x^2+3x^2\right)+\left(2x+2x+2x\right)+\left(1-1-12\right)\)
\(C=6x-12\)
Thay x = 1 vào biểu thức ta có : C = 6.1 - 12 = 6 -12 = -6
Còn bài kia làm nốt đi
a) \(9c^2-6c+3\)
\(=\left(9c^2-6c+1\right)+2=\left(3c-1\right)^2+2>0\)
b) \(14m-6m^2-13\)
\(=-6.\left(m^2-\frac{7}{3}m+\frac{13}{6}\right)\)
\(=-6.\left(m^2-2\cdot\frac{7}{6}\cdot m+\frac{49}{36}+\frac{29}{36}\right)\)
\(=-6.\left(m-\frac{7}{6}\right)^2-\frac{29}{6}< 0\)
c) \(a^2-2a+2=\left(a-1\right)^2+1>0\)
d) \(6b-b^2-10=-\left(b^2-6b+9\right)-1=-\left(b-3\right)^2-1< 0\)
a, \(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+15\)
\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+...+15=15\)
Bài 1:(Theo mình câu a nên sửa lại như thế này nhé)
a, a2-5a-14 b,x4+x2-2
=a2+2a-7a-14 =x4-x3+x3-x2+2x2-2x+2x-2
=(a2+2a)-(7a+14) =(x4-x3)+(x3-x2)+(2x2-2x)+(2x-2)
=a(a+2)-7(a+2) =x3(x-1)+x2(x-1)+2x(x-1)+2(x-1)
=(a+2)(a-7) =(x-1)(x3+x2+2x+2)
=(x-1)[(x3+x2)+(2x+2)]
=(x-1)[x2(x+1)+2(x+1)]
=(x-1)(x+1)(x2+2)
Bài 2:
a, x3+x2+x+1=0
<=>(x3+x2)+(x+1)=0
<=>x2(x+1)+(x+1)=0
<=>(x+1)(x2+1)=0
<=>\(\orbr{\begin{cases}x+1=0\\x^2+1=0\left(loại\right)\end{cases}}\)(x2 luôn lớn hơn hoặc bằng 0 =>x2+1 luôn lớn hơn hoặc bằng 1 nên x2+1=0 loại nhé)
<=>x= -1
b, x(2x-7)-4x+14=0
<=>x(2x-7)-(4x-14)=0
<=>x(2x-7)-2(2x-7)=0
<=>(2x-7)(x-2)=0
<=>\(\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)
ĐKXĐ \(2x+1\ge0\Rightarrow x\ge-\frac{1}{2}\)
Khi đó |x2 - 1| = 2x + 1
,=> \(\orbr{\begin{cases}x^2-1=2x+1\\x^2-1=-2x-1\end{cases}}\Rightarrow\orbr{\begin{cases}x^2-2x=2\\x^2+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2-2x+1=3\\x^2+2x+1=1\end{cases}}\Rightarrow\orbr{\begin{cases}\left(x-1\right)^2=3\\\left(x+1\right)^2=1\end{cases}}\)
Nếu (x - 2)2 = 3
=> \(\orbr{\begin{cases}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{2}+1\\x=-\sqrt{2}+1\end{cases}}\)(tm)
Nếu (x + 1)2 = 1
=> \(\orbr{\begin{cases}x+1=1\\x+1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\left(\text{loại}\right)\end{cases}}\Rightarrow x=0\)
a) \(A=\left(x-y\right)^2+\left(x+y\right)^2\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(=x^2-2xy+y^2+x^2+2xy+y^2\)
\(=\left(x^2+x^2\right)-\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
\(=2x^2+2y^2\)
\(=2.\left(x^2+y^2\right)\)
b) \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(=\left(4a^2-4a^2\right)+\left(4ab+4ab\right)+\left(b^2-b^2\right)\)
\(=8ab\)\
c) \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(=x^2+2xy+y^2-x^2+2xy-y^2\)
\(=\left(x^2-x^2\right)+\left(2xy+2xy\right)+\left(y^2-y^2\right)\)
\(=4xy\)
d) \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(=4x^2-4x+1-8x^2+24x-18+4\)
\(=\left(4x^2-8x^2\right)-\left(4x-24x\right)+\left(1-18+4\right)\)
\(=-4x^2+20x-13\)
\(=-4x^2+20x-25+12\)
\(=-\left(4x^2-20x+25\right)-8\)
\(=-\left[\left(2x\right)^2-2.4x.5+5^2\right]-8\)
\(=-\left(2x-5\right)^2-8\)
a) \(5x\left(\frac{1}{5}x-2\right)+3\left(6-\frac{1}{3}x^2\right)=12\)
=> \(x^2-10x+18-x^2=12\)
=> -10x + 18 = 12
=> -10x = -6
=> -5x = -3
=> x = 3/5
b) 7x(x - 2) - 5(x - 1) = 7x2 + 3
=> 7x2 - 14x - 5x + 5 = 7x2 + 3
=> 7x2 - 14x - 5x + 5 - 7x2 - 3 = 0
=> -19x + 2 = 0
=> -19x = -2
=> x = \(\frac{2}{19}\)
c) 2(5x - 8) - 3(4x - 5) = 4(3x - 4) + 11
=> 10x - 16 - 12x + 15 = 12x - 16 + 11
=> 10x - 16 - 12x + 15 - 12x + 16 - 11 = 0
=> (10x - 12x - 12x) + (-16 + 15 + 16 - 11) = 0
=> -14x + 4 = 0
=> -14x = -4
=> -7x = -2
=> x = 2/7
\(\frac{437^2-363^2}{537^2-463^2}=\frac{\left(437+363\right)\left(437-363\right)}{\left(537+463\right)\left(537-463\right)}=\frac{800.74}{1000.74}=\frac{8}{10}=\frac{4}{5}\)
a) \(x^2+4x+4=\left(x+2\right)^2\)
b) \(x^2-8x+16=\left(x-4\right)^2\)
c) \(\left(x+5\right)\left(x-5\right)=x^2-25\)
d) \(x^2+2x+1=\left(x+1\right)^2\)
e) \(4x^2-9=\left(2x-3\right)\left(2x+3\right)\)
f) \(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
g) \(\left(2+bx^2\right)\left(bx^2-2\right)=\left(bx^2+2\right)\left(bx^2-2\right)=\left(bx^2\right)^2-4=b^2x^4-4\)
a) 16x^2 - (4x - 5)^2 = 15
<=> 16x^2 - 16x^2 + 40x - 25 = 15
<=> 40x = 40
<=> x = 1
b) (2x + 3)^2 - 4(x - 1)(x + 1) = 49
<=> 4x^2 + 12x + 9 - 4x^2 - 4x + 4x + 4 = 49
<=> 12x + 13 = 49
<=> 12x = 36
<=> x = 3
c) (2x + 1)(1 - 2x) + (1 - 2x)^2 = 18
<=> 1 - 4x^2 + 1 - 4x + 4x^2 = 18
<=> 2 - 4x = 18
<=> -4x = 16
<=> x = -4
d)2(x + 1)^2 - (x - 3)(x + 3) - (x - 4)^2 = 0
<=> 2x^2 + 4x + 2 - x^2 + 3^2 - x^2 + 8x - 16 = 0
<=> 12x - 5 = 0
<=> 12x = 5
<=> x = 5/12
e) (x - 5)^2 - x(x - 4) = 9
<=> x^2 - 10x + 25 - x^2 + 4x = 9
<=> -6x + 25 = 9
<=> -6x = 9 - 25
<=> -6x = -16
<=> x = -16/-6 = 8/3
f) (x - 5)^2 + (x - 4)(1 - x) = 0
<=> x^2 - 10x + 25 + x - x^2 - x - 4 + 4x = 0
<=> -5x + 21 = 0
<=> -5x = -21
<=> x = 21/5