K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(AN=NB=\dfrac{AB}{2}\)

\(AM=MC=\dfrac{AC}{2}\)

mà AB=AC

nên AN=NB=AM=MC

=>NB=MC

Xét ΔNBC và ΔMCB có

NB=MC

\(\widehat{NBC}=\widehat{MCB}\)

BC chung

Do đó: ΔNBC=ΔMCB

b: Xét ΔABC có

BM,CN là các đường trung tuyến

G là trọng tâm

Do đó: BM cắt CN tại G

Ta có: ΔNBC=ΔMCB

=>\(\widehat{NCB}=\widehat{MBC}\)

=>\(\widehat{GBC}=\widehat{GCB}\)

=>GB=GC

=>G nằm trên đường trung trực của BC(1)

Ta có: AB=AC

=>A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AG là đường trung trực của BC

=>AG\(\perp\)BC

mà CE\(\perp\)BC

nên AG//CE

Xét ΔMGA và ΔMEC có

\(\widehat{MAG}=\widehat{MCE}\)(AG//CE)

MA=MC

\(\widehat{GMA}=\widehat{EMC}\)(hai góc đối đỉnh)

Do đó: ΔMGA=ΔMEC

=>MG=ME

=>M là trung điểm của GE

Ta có: G là trọng tâm của ΔABC

BM là đường trung tuyến

Do đó: BG=2GM

mà 2GM=GE

và BG=CG

nên CG=GE

=>ΔCGE cân tại G

c: Xét ΔEBC có GD//BC

nên \(\dfrac{GD}{BC}=\dfrac{EG}{EB}\)

=>\(\dfrac{GD}{BC}=\dfrac{1}{2}\)

=>BC=2GD

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

=>BD=CE

b: Ta có: ΔABD=ΔACE

=>AD=AE
=>ΔADE cân tại A

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

AE=AD

Do đó: ΔAEH=ΔADH

=>HE=HD

=>H nằm trên đường trung trực của ED(1)

Ta có: AE=AD

=>A nằm trên đường trung trực của ED(2)

Từ (1),(2) suy ra AH là đường trung trực của ED

=>AH\(\perp\)DE tại trung điểm của DE
d:

Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

=>\(\widehat{ECB}=\widehat{DBC}\)

Xét ΔBEI vuông tại E và ΔBEC vuông tại E có

BE chung

EI=EC

Do đó: ΔBEI=ΔBEC

=>\(\widehat{BIE}=\widehat{BCE}\)

mà \(\widehat{BCE}=\widehat{DBC}\)

nên \(\widehat{BIE}=\widehat{DBC}\)

11 tháng 4

a) Do K là trung điểm của BC (gt)

\(\Rightarrow BK=CK\)

Xét \(\Delta AKB\) và \(\Delta DKC\) có:

\(AK=DK\left(gt\right)\)

\(\widehat{AKB}=\widehat{DKC}\) (đối đỉnh)

\(BK=CK\left(cmt\right)\)

\(\Rightarrow\Delta AKB=\Delta DKC\left(c-g-c\right)\)

\(\Rightarrow\widehat{ABK}=\widehat{DCK}\) (hai góc tương ứng)

Mà \(\widehat{ABK}\) và \(\widehat{DCK}\) là hai góc so le trong

\(\Rightarrow AB\) // \(CD\)

b) Do \(\Delta ABC\) vuông tại A (gt)

\(\Rightarrow AB\perp AC\) 

Mà \(AB\) // \(CD\) (cmt)

\(\Rightarrow CD\perp AC\)

Do \(\Delta AKB=\Delta DKC\left(cmt\right)\)

\(\Rightarrow AB=CD\) (hai cạnh tương ứng)

Do H là trung điểm của AC (gt)

\(\Rightarrow AH=CH\)

Xét hai tam giác vuông: \(\Delta ABH\) và \(\Delta CDH\) có:

\(AB=CD\left(cmt\right)\)

\(AH=CH\left(cmt\right)\)

\(\Rightarrow\Delta ABH=\Delta CDH\) (hai cạnh góc vuông)

c) Sửa đề: Chứng minh \(\Delta HBD\) cân

Do \(\Delta ABH=\Delta CDH\left(cmt\right)\)

\(\Rightarrow HB=HD\) (hai cạnh tương ứng)

\(\Rightarrow\Delta HBD\) cân tại H

11 tháng 4

a) Do CD là tia phân giác của \(\widehat{ACB}\left(gt\right)\)

\(\Rightarrow\widehat{ACD}=\widehat{BCD}\)

\(\Rightarrow\widehat{ACD}=\widehat{ECD}\)

Xét hai tam giác vuông: \(\Delta ACD\) và \(\Delta ECD\) có:

\(CD\) là cạnh chung

\(\widehat{ACD}=\widehat{ECD}\left(cmt\right)\)

\(\Rightarrow\Delta ACD=\Delta ECD\) (cạnh huyền - góc nhọn)

b) Em xem lại đề nhé!

12 tháng 4

Mình chữa đề câu b) rồi còn sai ko cậu

 

M(1/2)=0

=>\(a\cdot\left(\dfrac{1}{2}\right)^2+5\cdot\dfrac{1}{2}-3=0\)

=>\(a\cdot\dfrac{1}{4}=\dfrac{1}{2}\)

=>\(a=\dfrac{1}{2}:\dfrac{1}{4}=2\)

11 tháng 4

Vì M(\(x\)) = a\(x^2\) + 5\(x\) - 3

    M(\(\dfrac{1}{2}\)) = 0 

a.(\(\dfrac{1}{2}\))2 + 5.(\(\dfrac{1}{2}\)) - 3 = 0

\(\dfrac{1}{4}\)a + \(\dfrac{5}{2}\) - 3 = 0

\(\dfrac{1}{4}\)a - \(\dfrac{1}{2}\) = 0

\(\dfrac{1}{4}\)a       = \(\dfrac{1}{2}\)

  a        = \(\dfrac{1}{2}\) : \(\dfrac{1}{4}\)

  a        = 2

Vậy để \(x\) = \(\dfrac{1}{2}\) là nghiệm của đa thức thì a = 2

        

11 tháng 4

a) Chỉ có 1 khả năng xuất hiện mặt có số chấm bằng 4 trong 6 khả năng nên P(A) = 16.

b) Chỉ có 1 khả năng xuất hiện mặt có số chấm bằng 5 là số chia hết cho 5 trong 6 khả năng nên P(B) = 16.

c) Không có mặt nào có số chấm là số tròn chục nên biến cố C là biến cố không thể.

Do đó P(C) = 0.

a:

\(\Omega=\left\{1;2;3;4;5;6\right\}\)

=>\(n\left(\Omega\right)=6\)

Gọi A là biến cố "Gieo được mặt có số chấm là 4"

=>A={4}

=>n(A)=1

=>\(P\left(A\right)=\dfrac{1}{6}\)

b: Gọi B là biến cố "Gieo được mặt có số chấm là số lẻ"

=>B={1;3;5}

=>n(B)=3

=>\(P\left(B\right)=\dfrac{3}{6}=\dfrac{1}{2}\)

c: Gọi C là biến cố "Gieo được mặt có số chấm lớn hơn 1"

=>C={2;3;4;5;6}

=>n(C)=5

\(P\left(C\right)=\dfrac{5}{6}\)

11 tháng 4

\(\left(20x^6-5x^5+15x^4\right):\left(-3x^3\right)\)

\(=20x^6:\left(-3x^3\right)+\left(-5x^5\right):\left(-3x^3\right)+15x^4:\left(-3x^3\right)\)

\(=-\dfrac{20}{3}x^{6-3}+\dfrac{5}{3}x^{5-3}-5x^{4-3}\)

\(=-\dfrac{20}{3}x^3+\dfrac{5}{3}x^2-5x\)

11 tháng 4

loading...  

Xem vị trí 3 ngôi làng là 3 đỉnh của ∆ABC

Khi đó vị trí đặt cột thu sóng tại D, với D là giao điểm của ba đường trung trực của ∆ABC

Theo tính chất ba đường trung trực của tam giác thì điểm D cách đều ba đỉnh A, B, C