K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Ta có : \(a+b+c+ab+bc+ca=6abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=6\)

Áp dụng BĐT :

\(xy+yz+zx\le x^2+y^2+z^2\)ta có :
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\left(1\right)\)

Áp dụng bất đẳng thức Bunhia ta có :

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\left(1^2+1^2+1^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{3}.\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\left(2\right)\)

Cộng theo vế (1) và (2) ta được :

\(6=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)\(+\sqrt{3}.\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)

\(\Leftrightarrow P+\sqrt{3}.\sqrt{P}\ge6\)

\(\Leftrightarrow\left(\sqrt{P}-\sqrt{3}\right)\left(\sqrt{P}+2\sqrt{3}\right)\ge0\)

\(\Leftrightarrow P\ge3\)

Vậy \(P_{min}=3\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

14 tháng 2 2020

Bất đẳng thức cần chứng minh tương đương với : \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)

\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)

\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)( * )

cần chứng minh BĐT (*)

Thật vậy, Áp dụng BĐT Cô-si dạng Engel, ta có :

\(\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=1\)

Vậy BĐT đã được chứng minh 

Dấu "=" xảy ra \(\Leftrightarrow\)a = b = c = 1

14 tháng 2 2020

khos thế

14 tháng 2 2020

Pt 1: 4(1/a  + 1/b )= 1

Pt 2: 1/a  +   3/b  = 5/12   

Từ 2 pt ta được hpt sau đó giải a,b với a là t/g người t1 làm cv đó, b là t/g người t2 làm cv đó